Structure Functions and the Transition Region from Photoproduction to DIS

Ringberg Workshop: New Trends in HERA Physics 2003

Dorian Kcira University of Wisconsin

<u>Outline</u>

• New H1 and ZEUS inclusive measurements in the transition region

• Dijet measurements in the transition region.

Transition Region from DIS to PHP The hard and soft regimes of QCD

At HERA: probe proton with photon of virtuality:

Hard scale = Q^2 . Three regions:

•DIS/ high Q^2 – hard regime, α_s small, pQCD reliable and very succesful in describing hard scattering

•PHP/low Q² (≈0) – soft regime, αs large, pQCD breaks down, non-perturbative region. Use phenomenological models (Regge, etc.)

•Transition region – between low and high Q², in this case between perturbative and nonperturbative regimes. Can we merge them into a unified QCD picture ? HERA plays important role.

 $Q^2 = -q^2 = -(k-k')^2$

New measurements in transition region

Precise measurements cover transition region around $Q^2 =$ 1GeV² in a wide range of x

Previous measurement:

• ZEUS BPC/BPT

This talk:

- H1 1999 (minimum bias)
- H1 2000 shifted vertex
- H1 1997 QED Compton
- ZEUS ISR (F_L part: see talk from V.Chekelian)

3.9 pb⁻¹ at very low Q^2 and x:

- $0.045 < Q^2 < 0.65 \text{ GeV}^2$
- $10^{-7} < x < 10^{-3}$
- •Rise of F_2 at low x continues at low Q^2 but is shallower.

Good description from Regge fit:

Structure functions at low Q2,

Previous results – ZEUS BPC/BPT

- $\sigma_{tot} \sim F_2/Q^2$ vs. Q², fixed W
 - low Q² REGGE fit (Q²_{max} = 0.65 GeV²)
 - high Q² NLO QCD fit (Q²min = 2.5GeV²)
 - low Q²: $F_2 \sim Q^2$
 - Transition region: few shifted vertex data with large errors.

Structure functions at low Q2, D.Kcira, U. Wisconsin, dorian.kcira@desy.

e* (k)

H1: F2 from QEDCompton analysis

QEDC: q² ~ 0, Compton scattering of a quasi-real photon off an electron:

H1: Shifted Vertex Measurement

• Shifting vertex by 70cm Run 260289 Event 94911 Class: 18 20 29 Date 12/07/2000 Spaghetti allows access to lower angle Calorimeter electrons, hence to lower Q² $Q^2 = 2.7 \text{ GeV}^2 \text{ x} = 0.0008$ Shifted vertex Precise reconstruction of the scattered positron: Nominal vertex $(\Delta \theta = 0.3 \text{ mrad}, \Delta E_{e'} = 0.3\%)$ e^+ р ~70cm Measure very low positron energy (~3GeV) \rightarrow high-y Backward Silicon Tracker .-Oct. 2003 – 8 Structure functions at low Q2, D.Kcira, U. Wisconsin, dorian.kcira@d

H1: Shifted Vertex Measurement

2000 measurement with 0.6pb⁻¹ in special shiftedvertex run

Factor of 4 increase in statistics w.r.t. 95 shifted vertex run

Rise at low x observed also at lower Q² but rate is smaller with decreasing Q²

Rise of F₂ towards low x

Summary inclusive

New precision data provide full coverage of important transition region of Q²~1GeV² between the perturbative and non-perturbative domains.

The dependence of F₂ on Q² is stronger at lower Q² values approaching a region of linear dependence. Data show smooth transition between the two regions.

The rise of F₂ at low x persists at low Q² but it is slower than observed at HERA at higher Q².

Two alternative ways of studying the transition region

Inclusive sample

- •Probe proton structure with photon of virtuality Q².
- •Transition from perturbative (DIS) to nonperturbative (PHP) regimes.

Subsample of dijet-events

• E_T of jets provides hard scale – pQCD applicable in the transition region.

•Probe of virtuality E_T^2 . Proton structure contained at these scales. Sensitivity to photon structure.

•Transition from real to virtual photons.

Structure functions at low Q2, D.Kcira, U. Wisconsin, dorian.kcira@desy.de

Ringberg Workshop, Sep.-Oct. 2003 - 13

Dijet Production at HERA

 $Q^2 < 1 \, GeV^2$

direct only Herwig5.9

- Herwig5.9

⁸1200

1000

800 600

<u>Note</u>: No F_{2}^{γ} at HERA but sensitivity to γ^{*} structure at high scales.

Structure functions at low Q2, D.Kcira, U. Wisconsin, dorian.kcira@desy.de

Ringberg Workshop, Sep.-Oct. 2003 - 14

$\gamma^* P - c.m.f.$ $2 < Q^2 < 80 GeV^2$ H1: dijet cross sections 0.1 < y < 0.85 H1 Preliminary $E_T^{jet1,2} > 5GeV$ >2 GeV 10 $\overline{E_{\tau}} > 6GeV$

 $-2.5 < \eta^{jet1,2} < 0$

Compare to LO MCs Herwig (cluster hadronization) and Rapgap (Lund hadronization) + parametr. of γ^* PDFs.

Interplay of scales:

 Resolved significant at low Q² or higher E_{T}^{2}

 Direct photon contribution almost describes data at higher Q² (lower E_{T}^{2}).

LO-MC predictions underestimate data (both Herwig and Rapgap)

X_v

X_v

X.

Structure functions at low Q2, D.Kcira, U. Wisconsin, dorian.kcira@desy.de

ZEUS: 2jets from PHP to DIS

$$\begin{array}{ll} \gamma^{*}P-c.m.f & \text{Measure:} \\ 0 < Q^{2} < 2000 GeV^{2} & d\sigma/dQ^{2} \\ 0.2 < y < 0.55 & d^{2}\sigma/dQ^{2}dE_{T}^{jet1} \\ E_{T}^{jet1,2} > 7.5,6.5 GeV & R = \sigma(x_{\gamma}^{obs} < 0.75)/\sigma(x_{\gamma}^{obs} > 0.75) \\ -3.0 < \eta^{jet} < 0 & \end{array}$$

Compare results to LO and NLO predictions:

•Herwig MC with real photon GRV and SaS1D parametrization of γ^* PDFs

•Frixione-Rindolfi-NLO for PHP: real photon PDFs GRV / AFG

•Disaster++ for DIS: higly virtual pointlike photon

ZEUS 2jets comparison to NLO

•Precise data from PHP to DIS including transition region

•Data and NLOs split in low and high x_{γ}^{obs} components

•Disaster scale: $\mu_R^2 = Q^2 + E_T^2$

• Low x_{γ}^{obs} dominant in PHP - still non-negligible up to order of $100 GeV^2$

• PHP: NLO describes data

• DIS: Shape of data described. NLO underestimates cross section

• High x_{γ}^{obs} component is better described from NLO than low one

ZEUS 2jets comparison to NLO

The cross section falls less steeply as the Q² increases

PHP: DIS describes data within r.s.uncertainty

DIS: scale $Q^2+E_T^2$ does better in the description of the data than scale Q^2

ZEUS ratio of xsecs: NLO

•**R** sensitive to res. photon structure suppression and cancellation of uncertainties

•Data fall with increasing photon virtuality. Steeper fall at lower E_T^2

•Ratio compared to NLO

•PHP: Frixione+GRV closer to measured ratio than Frixione+AFG

•DIS: Disaster scale $Q^2 + E_T^2$ describes shape of fall of ratio but not enough low x γ^{obs} in proportion to high x_γ^{obs} .

ZEUS ratio LO

•Herwig+GRV-LO describes PHP ratio

•Herwig+SaS1D seems to describe the shape of the data and slightly underestimate ratio

•Consistent picture across transition region

Summary Dijet measurements

Precise dijet measurements in PHP/DIS and accross transition region. Measurements can significantly constrain PDFs of virtual photon.

> Different concepts tested in the low Q² region.

LO consistent picture of transition from PHP to DIS with suppression of virtual photon structure.

NLO calculations show large uncertainties and fail to describe transition region. High x_γ^{obs} component better described.

Conclusions

Precise inclusive inclusive and dijet measurements cover the transition region from low to high photon virtualities.

> Rise of F_2 at low x persists but is slower at low Q^2

Dijet measurements can significantly contrain PDFs of virtual photon.

No consistent QCD picture yet for the transition region.