Photo- and Electroproduction of Single Hadrons and Resonances

F.Corriveau, *IPP/McGill University/DESY*

Ringberg Workshop, 30.09.2003

Neutral mesons at HERA Strangeness production Strange content of the sea $K_s^0 K_s^0$ resonances

Scope

The conversion of quarks and gluons into colourless hadrons is not well described at all by QCD processes, especially for light quarks, hence hadronisation models.

> HERA lags behind LEP in several of the particle production measurements.

Production studies of strange particles and observation of light resonances should contribute to the understanding of hadronisation processes.

> Further, strange particles can be used to probe the proton sea content or special states of matter.

Neutral Mesons

How do quarks and gluons convert to colourless hadrons?

- **pQCD** does not apply
- phenomenological models of hadronisation

Inclusive photoproduction of neutral hadronic resonances: η , ρ^0 , f₀(980) and f₂(1270)

Test universality of hadroproduction

Neutral Mesons

Neutral Mesons

Differential photoproduction cross sections

Strange particles have already been measured by ZEUS and H1 at HERA: K_s^0 and Λ 's (1994 data)

Of special interest (clear signatures):

•
$$K_{s}^{0} \rightarrow \pi\pi$$
 (BR=69%)
• $\Lambda, \overline{\Lambda} \rightarrow p\pi$ (BR=64%)
• $\phi \rightarrow KK$ (BR=49%)
e.g. for fragmentation
e.g. for sea content

Rates and distributions of shapes have been measured in deep inelastic scattering and photoproduction, fragmentation functions, but no cross section had been determined.

e) γ^* D_s f) γ^* ϕ, K_s

Strange quarks may come from:

- flavour excitation (a)
- QCD Compton, g-splitting (a)
- Boson-Gluon fusion (b)
- hadronisation processes (c,d)
- decay from higher-mass states (e)
- diffractive processes (f)

Can one differenciate?

DIS phases:

- 1 parton evolution (e.g. DGLAP), hard scattering (PDF's)
- 2 parton shower
- 3 string/clusters (fragmentation)
- 4 resonance decays
- 5 final state hadrons (detector-level)

Fragmentation models:

in HERWIG: Cluster Fragmentation Model in ARIADNE+JETSET: Lund String Model

Open questions:

how are strange particles *really* produced? is strange particle fragmentation universal? differences baryons *vs* anti-baryons? .. strangeness suppression factor 0.3 (LEP)?

Understanding needed for the direct measurements of proton sea quarks.

ZEUS preliminary cross sections

	$\sigma(K_S^0)$ [pb]	$\sigma(\Lambda+\bar{\Lambda})$ [pb]	$\sigma(\Lambda+\bar{\Lambda})/\sigma(K^0_S)$	$\sigma(\Lambda)$ [pb]	$\sigma(\bar{\Lambda})$ [pb]	$\sigma(\Lambda)/\sigma(\bar{\Lambda})$
ZEUS (prel.)	$2454 \pm 18^{+32}_{-102}$	$567 \pm 12^{+13}_{-34}$	$0.231 \pm 0.005 \substack{+0.005 \\ -0.006}$	$292 \pm 9^{+7}_{-18}$	$279 \pm 9^{+12}_{-18}$	$1.05 \pm 0.05 \substack{+0.05 \\ -0.05}$
CDM: λ _s =0.3	2762	603	0.218	302	301	1.00
CDM: λ _s =0.2	2257	483	0.214	240	243	0.99
HERWIG	1854	1329	0.717	661	668	0.99

 ZEUS (prel.) 99-00 50<Q²<500 GeV² 3⋅10⁻⁴<x<10⁻¹
 CDM
 λ_s=0.3

λ_s=0.2

- Strangeness suppression factor: $\lambda_s = P(s)/P(d); P(d)=P(u)$
- Measurement falls between Lund String Model with λ_s of 0.2 and 0.3
- HERWIG fails to predict total cross sections

Differential cross sections in the Laboratory Frame

- renormalized HERWIG fails to reproduce the cross sections in p_T while the ratio in p_T is ~ok.
- the effect of changing λ_s is not uniform.
- from the η distribution, there is indication of increased baryon to meson production in the forward region

 \rightarrow go to the <u>Breit Frame</u>

Breit Frame

The Breit Frame is a natural way to separate the radiation of the struck quark from the proton remnant.

Scaled momentum: $x_p = \frac{2p}{Q}$

Current region $(p_z < 0)$ QPM: $x_p(s) = 2p(s)/Q = 1$ 1st & HO QCD: $x_p(s) \neq 1$

Target region $(p_z > 0)$ max. remnant momentum p_R :

 $p_R \approx Q(1-x)/2x$ $x_p^{max} \approx (1-x)/x >> 1$

Differential cross sections in x_p bins (<u>Breit Frame</u>)

target region (proton remnant):

- measurements more towards $\lambda_s = 0.3$, shape problem?
- HERWIG falls too steeply

current region (like in e⁺e⁻):

- less sensitive to λ_s
- HERWIG does not fall steeply enough

from proton remnant region: is λ_s related to gluon density?

Strange Content of the Sea

acceptance ~45%

(181±28 leading mesons)

Strange Content of the Sea

Cross section: $\sigma(e^+p \rightarrow e^+\phi X) = 0.507 \pm 0.022(stat.) + 0.010/-0.008(syst.)$ nb

= 0.501 (LEPTO, λ_s =0.22) = 0.509 (ARIADNE, λ_s =0.22)

Differential cross sections:

CTEQ5D parton density

Hard QCD processes:

- sea s-quarks involved
- fraction increases with p_T
- significant in current region
- vanishing in target region

 $\lambda_s = 0.22 \pm 0.02$

Strange Content of the Sea

xp

ZEUS 0.6 d**a** / d x_p (nb) ZEUS 95-97 Monte Carlo models with $\gamma s \rightarrow s$ 0.4 without $\gamma s \rightarrow s$ 0.2 D 0.5 0.6 0.7 0.8 0.9 1 1.1

Leading ϕ mesons (x_p>0.8)

- high p_T means small uncertainties in QCD processes and hadronisation
- QED scattering description $\gamma^*s \rightarrow s$
- additional g-emissions not relevant

Uncertainties from:

- MC models (LEPTO, ARIADNE, HERWIG)
- λ_s∈ [0.2-0.3]

Leading ϕ mesons show evidence of contribution from the strange sea in the proton at low x.

K_s⁰ K_s⁰ resonances

QCD predicts glueballs states as hadrons made up from gluons Lattice QCD calculations set the lightest at 1730 ± 100 MeV (J^{CP}=0⁺⁺) The K_s⁰K_s⁰ system is expected to couple to 0⁺⁺ and 2⁺⁺ glueballs The scalar 0⁺⁺ nonet:

- 3 (*I*=0) candidates for 2 spots:
- f₀(1370)
- f₀(1500)

• f₀(1710) glueball candidate ↓

observed, **J=0** from WA102

g-content not yet established

L3 reported 2 states at $1525(f_2')$ and 1760 MeV(?)

K⁰ K⁰ resonances

ZEUS 1996-2000 data: integrated luminosity = 121 pb⁻¹

ZEUS Q² (GeV²) • ZEUS 96-00 $0.04 \le y \le 0.95$ $E_{P} \ge 8.5 \text{ GeV}$ 10^{3} box cut on RCAL: ±14 cm 10^{2} + other background reduction cuts 10 ele = 176 10⁻³ 10⁻⁴ -2

10

10

10

х

ZEUS

K_s⁰ K_s⁰ resonances

Discussion

ZEUS: state at 1726 ± 7 MeV width of 38^{+20}_{-14} MeV 74^{+29}_{-23} events

- BES: 1722 ± 17 MeV, width ~ 167
- Belle: 1768 ± 10 MeV, width ~ 323
- PDG: f₀(1710) has width 125±10 MeV

Correlations were studied by fixing widths to PDG values: still good fits

Breit Frame studies: 93% of candidates are in the target region, where the proton remnant is (i.e. sizeable initial state gluon radiation expected).

Summary

First measurement of inclusive photoproduction cross sections of light resonances η , ρ^0 , $f_0(980)$ and $f_2(1270)$. Features similar to those of other light, long-lived hadrons.

Strangeness production (K_s^0 , Λ) is well described by MC models with $\lambda_s \sim 0.22$, but ~ 0.3 in target region of Breit Frame (as at LEP). HERWIG is inconsistent with data.

First observation of resonant $K_s^0 K_s^0$ final states in DIS at 1537 MeV (f_2 '?) and 1726 MeV (glueball candidate).

Particles

Particle	QPM	Mass	J ^{P(C)}	сτ	Decay	Branching
		[GeV]		[cm]	Mode	Ratio
η	(uds)	0.547	0-+		γγ	39%
$ ho^0$	<i>(ud)</i>	0.770	1		$\pi^+\pi^-$	~100%
f_0	(uds)	0.980	0^{++}		$\pi^+\pi^-$	78%
φ ^ˆ	(uds)	1.019	1		K^+K^-	49%
f_2	(uds)	1.270	2^{++}		$\pi^+\pi^-$	85%
$\overline{f_2}$	(uds)	1.525	2^{++}		KK	89%
f_J	(uds)	1.710	0++		KK	?
K_{s}^{0}	ds	0.497	0-	2.68	$\pi^+\pi^-$	69%
Λ	uds	1.116	$\frac{1}{2}^{+}$	7.89	$p^+\pi^-$	64%
Σ^{\pm}	uus,dds	1.385	$\frac{1}{2}^{+}$		$\Lambda\pi^{\pm}$	88%
Ξ	dss	1.321	$\frac{1}{2}^{+}$	4.91	$\Lambda\pi^{-}$	~100%
Ω-	SSS	1.672	$1\frac{1}{2}^{+}$	2.46	ΛK-	68%

Deep Inelastic Scattering

- \sqrt{s} = center of mass energy
- q = e e'
- $Q^2 = -q^2 = sxy$
- $x = Q^2 / (2pq)$
- $y = (p \cdot q)/(p \cdot e)$

rapidity:
$$y = \frac{1}{2} \ln \frac{E - p_z}{E + p_z}$$

pseudirapidity: $\eta = -\ln(\tan\frac{\theta}{2})$