

Uwe Schneekloth DESY

QFTHEP 2003 MV "Klement Gotwald" 05.09.2003

Outline

- Introduction
- Deep Inelastic Scattering
 - High Q² charged current cross section and structure function
- Search for New Physics
 - Lepton-flavor violation in tau production
 - Single-top production
- Deeply Virtual Compton Scattering
- Jets in Photoproduction
 - Scaling violation
 - Alpha s measurement
- Current Status and Prospects
- Summary

Introduction

Recent ZEUS Results

U. Schneekloth

Introduction: HERA Kinematics

Kinematical variables:

- (Negative) squared 4-moment transfer carried by exchange boson Q² = -q² = -(k-k)²
- Fraction of proton momentum carried by struck quark (Bjorken scaling variable)

$$x \equiv \frac{Q^2}{2 \, p.q}$$

- Inelasticity $y \equiv \frac{1}{2}$
- Hadronic center-of-mass $W^2 = (q+p)^2 = ys - Q^2$

Kinematic range Q² vs. x

Introduction – ZEUS Detector

Recent ZEUS Results

$$e^+p \rightarrow n_e p$$

Motivation

- Exchange of W boson
- NC interactions: all (anti)quarks flavor
- CC interactions: only down-type quarks and up-type antiquarks in e⁺p
 - => Study parton distribution functions (PDF) for different quark flavors.

$$\frac{d\boldsymbol{s}_{Born}^{CC}(e^+p)}{dxdQ^2} = \frac{G_F^2}{4\boldsymbol{p}x} \frac{M_W^4}{(Q^2 + M_W^2)^2} \Big[Y_+ F_{2,e^+p}^{CC}(x,Q^2) - y^2 F_{L,e^+p}^{CC}(x,Q^2) - Y_- x F_{3,e^+p}^{CC}(x,Q^2) \Big] \qquad Y_{\pm} = 1 \pm (1-y)^2$$

Structure functions:

- Sums of quark and antiquark PDFs
- Longitudinal structure function

$$F_{2,e^+p}^{CC} = x \bigg[d(x,Q^2) + s(x,Q^2) + \bar{u}(x,Q^2) + \bar{c}(x,Q^2) \bigg]$$
$$xF_{3,e^+p}^{CC} = x \bigg[d(x,Q^2) + s(x,Q^2) - \bar{u}(x,Q^2) + \bar{c}(x,Q^2) \bigg]$$

0 at LO QCD, negligible at NLO QCD except at y close to 1

Recent ZEUS Results

U. Schneekloth

 F_{L,e^+p}^{CC}

Data sample

- $Q^2 > 200 \text{ GeV}^2$
- y < 0.9
- P_{T,miss} > 20 GeV 1164 events

Recent ZEUS Results

Differential cross section vs Q²

$$\frac{d^2 \mathbf{s}}{dx dQ^2} = \frac{N_{data} - N_{bg}}{N_{MC}} \cdot \frac{d^2 \mathbf{s}_{Born}^{SM}}{dx dQ^2}$$

Results:

- Diff.cross section decreases by 4 orders of magnitude due to W-boson propagator and decreasing quark density at large x
- Excellent agreement data and SM prediction.
- G_F fixed to PDG value, using ZEUS-S fit PDFs:

 $M_W = 78.9 \pm 2.0(stat.) \pm 1.8(syst.)_{-1.8}^{+2.0}(PDF)GeV$

Main systematic uncertainties:

- calorimeter energy scale
- variation of selection thresholds
- parton-shower scheme
- luminosity measurement

Data and SM prediction in good agreement:

- Confirms decomposition of p momentum into different quark flavors, evolution of parton distributions towards large scales.
- Uncertainty at large x,Q²: lack of data constraining d-quark density.

Recent ZEUS Results

U. Schneekloth

Reduced double-differential cross section as function of Q²

$$\tilde{\boldsymbol{s}} = \left[\frac{G_F^2}{2\boldsymbol{p}x}\left(\frac{M_W^2}{M_W^2 + Q^2}\right)\right]^{-1} \frac{d^2\boldsymbol{s}}{dxdQ^2}$$

At leading order in QCD *s* depends on quark momentum distributions:

$$\tilde{\boldsymbol{s}}(e^+p \to \bar{\boldsymbol{n}}_e X) = x \left[\bar{u} + \bar{c} + (1-y)^2 (d+s) \right]$$

Recent ZEUS Results

Reduced double-differential cross section as function of x

Separate contributions of parton density functions

 $(1-y)^2 x(d+s)$

 $x(\bar{u}+\bar{c})$

Helicity structure: reduced cross section as function of (1-y)²

W boson couples only to:

- left-handed fermions
- right-handed antifermions
 Helicity plot:
- plot s vs (1-y)² for fixed x
- Region of approximate scaling: straight line.

$$\tilde{\mathbf{s}}_{CC}(e^+p) = x \left[(\bar{u_s} + \bar{c_s}) + (1 - y)^2 (d_v + d_s + s_s) \right]$$

$$\tilde{\mathbf{s}}_{CC}(e^-p) = x \left[(u_v + u_s + c_s) + (1 - y)^2 (\bar{d}_s + \bar{s}_s) \right]$$

Valence quarks:

- intercept: u_v
- slope: d_v

Recent ZEUS Results

U. Schneekloth

Extraction of structure function F_2^{cc}

$$F_{2}^{CC} = \frac{2}{Y_{+}} \left(\underbrace{s_{CC}}^{e^{+}p} + s_{CC}}_{+ s_{CC}} \right) + \Delta(xF_{3}^{CC}, F_{L}^{CC})$$

 $Y_{+} = 1 + (1 - y)^{2}$

Measured reduced cross sections

Correction term computed at NLO in QCD using ZEUS-S fit

Data at much higher Q² than previous data, well described by SM prediction

CCFR *n* Fe data not included in ZEUS fit

Search for Single-top Production

Motivation

- Single-top production through flavor-changing neutral current (FCNC)
- Standard Model contribution < 1fb (GIM mechanism)
- Several theories beyond the SM predict FCNC
- FCNC coupling at tuV,tcV Most sensitive to tuV (charm PDF of proton small at high x)
- Effective anomalous coupling at t-u-? or t-u-Z vertex

$$\Delta L_{eff} = ee_t \bar{t} \frac{i \boldsymbol{s}_m q}{\Lambda} (\boldsymbol{k}_{tug}) A^m + \frac{g}{2\cos \boldsymbol{q}_W} \bar{t} \boldsymbol{g}_m v_{tuZ} u Z^m + h.c.$$
magnetic vector coupling

Single-top: Experimental Signature

Production modes:

Final states for gamma and Z exchange quite different

• ?-exchange: e[±] forward peaked (escapes through rear beam pipe hole 65%)

• Z-exchange: e[±] in central part

Decay modes:

- Standard Model
 - leptonic (BR 32%): $t \rightarrow bW$, $W \rightarrow l$? isol.lepton, jet, p_{Tmiss}
 - hadronic (BR 68%): t→bW, W→q⁻q 3 jets, m_W, m_{top}
- Flavor Changing Neutral Currents • k_{t-u-g} t \rightarrow u?

 \mathcal{V}_{t-u-Z}

n-jets (+lepton pairs)

Data sample: integrated luminosity: 130.1 pb⁻¹ v s 300 and 318 GeV

top

9/0

K_{tuγ} (V_{tuZ})

q (u,c

top

U. Schneekloth

 $t \rightarrow uZ^0$

Single-top: Lepton Decay Modes

Data selection

- Isolated high energy lepton (e^{\pm} or μ^{\pm}),
- missing momentum and jet

 p_{had T} > 40 GeV also looked at >25 GeV
 Number of events after final selection channel e mu obs/exp events 0 / 0.94±.1 0 / 0.95 ±.1

Single-top MC

- eu→ et simulated using CompHEP, input to PYTHIA6 (proton remnant,QED rad correction and hadronization)
- ? exchange checked with HEXF (same result)
- Contribution of interference term < 1%
 Standard Model background
- NC DIS LEPTO 6.5, HERACLES for rad. corr.
- 2 photon processes: GRAPE generator
- single-W production: EPVEC, include higher order QCD corrections

Recent ZEUS Results

Search for Single-top Production

Data selection

- 3 jets with large $E_{jet,T}$
- no missing transverse momentum
- invariant mass $M_{ii} \cong M_{W'}$, $M_{3j} \cong M_{top}$ jet mass cuts $65.2 < M_{jj} < 90.8 \text{ GeV}$ $159 < M_{3j} < 188 \text{ GeV}$ Number of events after final selection channel hadronic obs/exp events 14 / 17.6

No excess observed Set limits using two-dimensional probability density

Single-top Production: Results

Limits on anomalous couplings significantly improved

Recent ZEUS Results

U. Schneekloth

Motivation for search $e^+p \rightarrow t \times$

 Many extensions of Standard Model allow Lepton Flavor Violation

- Leptoquark (LQ): both lepton and baryon numbers and lepton-quark Yukawa couplings
- LFV if LQ couples to two different generations
- Mediated by squarks in R-parity-violation SUSY models

Buchmüller-Rückl-Wyler model: 14 LQ types, fermion number 0, 2

Narrow width approximation

 $(M_{LQ} < \sqrt{s})$

 $\boldsymbol{s}^{NWA}(\boldsymbol{l},\boldsymbol{M}_{LQ}) \propto \boldsymbol{l}_{lq_i}^2 \boldsymbol{B}_{lq_j}$

 I_{eq_i} LQ coupling to electron and quark (generation i)

 B_{lq_i} Branching ratio to lepton and quark

High mass approximation

$$\boldsymbol{s}^{HMA}(\boldsymbol{l}, \boldsymbol{M}_{LQ}) \propto \left[\frac{\boldsymbol{l}_{eq_i} \boldsymbol{l}_{eq_j}}{\boldsymbol{M}_{LQ}^2}\right]^2$$

 $(M_{12} >> \sqrt{s})$

Event Signature

- High transverse momentum isolated \boldsymbol{t} balanced by a jet
- Only tau decay products visible in detector
 - \rightarrow large transverse momentum imbalance P_{t,mis}
- Look at leptonic (35%) and hadronic (65%) decays
- Leptonic decays:
 - P_{t,mis} > 15 GeV (20 GeV)
 - 20 < E-P_z < 52 GeV
 - $P_{t,mis} / v E_t > 2.5 v GeV$
 - Isolated e: $E > 20 \text{ GeV } \mu$: $p_t > 5 \text{ GeV}$

Hadronic *t* decays:

- No electron with E > 10 GeV
- E_t > 50 GeV
- 15 < E-P_z < 60 GeV
- t jet candidate:
 - $p_t > 15 \text{ GeV}$
 - 1 to 3 tracks
- t discriminant:
 - jet shape: 6 observables
 (radial extension of jet energy)

Standard Model processes expect 0.8 ± 0.3 events (CC DIS, di- μ and di-t production in photon-photon interactions or photoproduction)

Results: Limits on $I_{eq_1}\sqrt{B_{tq}}$ as function of M_{LQ} for lower mass scalar and vector Leptoquarks

95% C.L. lower limits on LQ assuming $?_{eq_1} = ?_{tq} = 0.3$ (electromagnetic strength)

~ ^L	~ 1	~ R	I	R	~ <i>R</i>	I
$S_{1/2}$	$S_{1/2}^{L}$	$S_{1/2}^{R}$	V_0^L	V_0^{R}	V_0	V_1^L
276	293	293	276	281	296	299

Limits on $I_{eq_1} \sqrt{B_{tq}}$ equivalent to limits on $I_{q_1} \sqrt{B_{tq}}$ for \tilde{u} squarks

Recent ZEUS Results

U. Schneekloth

Upper 95%C.L. limits on $?_{eq_a}$ $?_{tq_B}/M_{LQ}^2$ (TeV⁻²) for F=0 high mass LQs

	$e \to \tau$		ZEUS		F = 0		
lphaeta	$egin{array}{c} m{S}^{L}_{1/2} \ e^{+u_lpha} \end{array}$	$S^R_{1/2} \ e^{+(u+d)_lpha}$	$ ilde{m{S}}^{m{L}}_{1/2}\ e^+d_lpha$	$V^L_0_{e^+ d_lpha}$	$V^{R}_{0}_{e^{+}d_{lpha}}$	$egin{array}{c} ilde{m{V}_{m{0}}^{m{R}}} \ e^{+}u_{lpha} \end{array}$	$V_1^L \ e^{+(\sqrt{2}u+d)_lpha}$
11	$ au ightarrow \pi e$ 0.4 2.2	$egin{array}{c} au ightarrow \pi e \ 0.2 \ 1.8 \end{array}$	$egin{array}{c} au ightarrow \pi e \ 0.4 \ 3.2 \end{array}$	$egin{array}{c} au ightarrow \pi e \ 0.2 \ 2.3 \end{array}$	$egin{array}{c} au ightarrow \pi e \ 0.2 \ 2.3 \end{array}$	$ au ightarrow \pi e$ 0.2 1.7	$egin{array}{c} au ightarrow \pi e \ 0.06 \ egin{array}{c} 0.8 \end{array} \end{array}$
12	2.2	$ au ightarrow Ke$ $ ext{6.3}$ $ ext{1.9}$	$K \rightarrow \pi \nu \mathcal{P}$ 5.8×10^{-4} 3.4	au ightarrow Ke 3.2 2.6	$egin{array}{c} au ightarrow Ke \ 3.2 \ 2.6 \end{array}$	1.9	$K ightarrow \pi u \mathcal{P}$ $1.5 imes 10^{-4}$ 0.9
13	*	$egin{array}{c} B ightarrow au ar{e} \ 0.6 \ 3.8 \end{array}$	$egin{array}{c} B o au \overline{e} \ 0.6 \ 3.8 \end{array}$	$egin{array}{c} B o au \overline{e} \ 0.3 \ 3.2 \end{array}$	$egin{array}{c} B ightarrow au ar{e} \ 0.3 \ 3.2 \end{array}$	*	$egin{array}{c} B ightarrow au \overline{e} \ 0.3 \ 3.2 \end{array}$
21	11	au ightarrow Ke 6.3 6.4	$K \rightarrow \pi \nu \mathcal{P}$ 5.8×10^{-4} 7.8	$egin{array}{c} au ightarrow Ke \ 3.2 \ 3.5 \end{array}$	$egin{array}{c} au ightarrow Ke \ 3.2 \ 3.5 \end{array}$	4.6	$K ightarrow \pi u \mathcal{D}$ $1.5 imes 10^{-4}$ 1.9
22	$\tau \rightarrow ee\overline{e}$ 20 13	$ au ightarrow ee\overline{e}$ 30 $\overline{7.3}$	$ au ightarrow ee\overline{e}$ $ ext{66}$ $ ext{8.9}$	$ au ightarrow eear{e}$ 33 4.4	$ au ightarrow eear{e}$ 33 4.4	$\tau \rightarrow eee$ 10 7.1	$ au ightarrow eear{e}$ 6.1 2.7
23	*	$B \rightarrow \tau \bar{e} X$ 14 11	$B \rightarrow \tau \bar{e} X$ 14 11	$B \rightarrow \tau \bar{e} X$ 7.2 6.8	$B ightarrow au ar{e} X$ 7.2 6.8	*	$B \rightarrow \tau \bar{e} X$ 7.2 6.8
31	*	$egin{array}{c} B ightarrow au ar{e} \ 0.6 \ 11 \end{array}$	$B ightarrow au \overline{e}$ 0.6 11	$m{V}_{ub} \ 0.12 \ m{4.0}$	$egin{array}{c} B ightarrow au ar{e} \ 0.3 \ 4.0 \end{array}$	*	$f V_{ub} \ 0.12 \ 4.0$
32	*	$egin{array}{c} m{B} ightarrow au m{e} m{X} \ 14 \ 14 \ 14 \end{array}$	$egin{array}{c} B ightarrow au ar{e} X \ 14 \ 14 \ 14 \end{array}$	$egin{array}{c} B ightarrow au ar{e} X \ 7.2 \ 5.2 \end{array}$	$egin{array}{c} B ightarrow au ar{e} X \ 7.2 \ f{5.2} \end{array}$	*	$B \rightarrow \tau \bar{e} X$ 7.2 5.2
33	*	$ au ightarrow eear{e}$ 30 19	$ au ightarrow eear{e}$ $ fill ext{66}$ $ ext{19}$	$ au ightarrow eear{e}$ 33 10	$ au o e e ar{e}$ $ ext{33}$ $ ext{10}$	ж	$ au ightarrow eear{e}$ 6.1 10

a and ß quark generations Upper entry: most stringent low energy limits Lower entry: ZEUS limits Box: ZEUS best limit

Similar limits for |F|=2 LQs

Some limits also apply to R_pviolating squarks. If higher generation quarks involved ZEUS limits most stringent

Recent ZEUS Results

DVCS: QCD process

Dominant at low x

Motivation

- Study proton structure by measuring correlations between pairs of gluons within the proton.
- Correlations are parametrized by generalized parton distribution functions (GPD)
- GPD information about the wave function of the proton

Advantages

- Simple state and absence of hadronization, no form factors
 - \rightarrow QCD predictions more reliable than for many other exclusive final states.
- Process one of the best understood exclusive processes in ep.

Background process Bethe – Heitler process

DVCS event signature 2 isolated electromagnetic clusters

 $\begin{array}{l}
 g_1: \quad \text{RCAL} \\
 g_2: \quad 1.2 \quad > ? > -1.6 \\
 E_1 > E_2 \quad ?_1 < ?_2
 \end{array}$

3 classes of events:

- RCAL: e^+ , central photon: DVCS and HB
- RCAL ${m g}$, central e: only BH
- RCAL*g*, central e⁻ non-resonant e⁺e⁻, J/Psi production

Comparison with MC:

BH and QED di-lepton production: Grape generator

DVCS

GenDVCS based on Frankfurt, Freund and Strikman

Radiative corrections: HERACLES

Good agreement

Total cross section: W dependence

No significant differences between e⁺ p and e⁻ p

Fit W^d d = $.75 \pm .15_{-0.06}^{+0.08}$

comparable to J/Psi production

Steep rise \rightarrow presence of hard underlying process

Total cross section: W dependence as function of Q²

Compatible with

- no dependence on Q²,
- increase with Q² as in exclusive production of light vector mesons.

Recent ZEUS Results

U. Schneekloth

Total cross section: Q^2 dependence for W = 89 GeV

e⁻p, e⁺p no difference →insensitive to interference term

Fit Q⁻²ⁿ

- e⁺p n=1.54 +- 0.07 +- 0.06 lower than for exclusive vector meson production
- e⁻p n=1.69 +- 0.21 +0.09 -.06

GPD based model: Freund, McDermot, Strikman

Exponential slope of t dependence

 $b = 8(1 - 0.15 \ln(Q^2/2))GeV^{-2}$

- Jet-production provides test of QCD
- Comparison of jet cross sections for same reaction at different energies
- Parton model predicts scaled invariant cross section independent of center of mass energy
- QCD predicts non-scaling behavior due to evolution of structure functions of colliding hadrons and running of a_s.
- 2 QCD processes:
 - photon interacts directly with parton in proton
 - photon source of partons, interacts with parton in proton

- Should observed scaling violation in both processes
- Measurement of high ${\rm E}_{\rm T,jet}$ cross section over wide range of allows determination of $a_{\rm s}$

Data

- At least one jet $E_T > 10$ GeV and ? < 2.5
- $Q^2 <= 1 \text{ GeV}$, median 10^{-3} GeV^2
- 142 < W < 293 GeV

Fixed-order QCD calculations

- Leading and next-to-leading order QCD calculations: Klasen, Kleinwort, Kramer
- Used MRST99 parametrizations of parton distribution functions (PDF)
- GRV for photon
- QCD calculations refer to partons
 - \rightarrow predictions were corrected to hadron level

Inclusive jet differential cross section

- LO QCD calculations underestimates cross section by 50% for $E_{T,jet} < 45$ GeV
- NLO calculations in good agreement over whole E_{T,jet} range

Recent ZEUS Results

Scaled invariant cross section $(E_T^{jet})^4 \left[\frac{E^{jet} d^3 \mathbf{s}}{dp_X^{jet} dp_Y^{jet} dp_Z^{jet}} \right]_{\mathbf{h}} \text{VS} \quad X_T$

Data well described by NLO calculations

Recent ZEUS Results

U. Schneekloth

Ratio of scaled jet invariant cross sections for $\langle W_{g\!p}
angle$ 180 and 255 GeV

Clear deviation from 1

 In good agreement with NLO QCD, including running of a_s and evolution of PDFs

First observation of scaling violations in ?p interactions

Recent ZEUS Results

 a_s determination: QCD fit of measured ds / dE_T^{jet}

 $a_s(M_Z) = 0.1224 \pm 0.0001(\text{stat.})^{+0.0022}_{-0.0019}(\text{exp.})^{+0.0054}_{-0.0042}(\text{th.})$

Main uncertainties:

- experimental:
 - jet energy scale ±1.5%
- theoretical
 - terms beyond NLO +4.2% -3.3%
 - uncertainties of photon PDF and hadronization correction +0.7% and 0.8%
 - Uncertainty of proton PDF ±0.9%

Energy-scale dependence of a_s

- Good agreement with running of as
- Extrapolation to $E_T^{jet} = M_Z$

ZEUS Determinations of a_s

Status and Prospects

2000-2001 Shutdown for HERA Luminosity Upgrade

- Increase HERA luminosity by factor 4-5
- Install spin rotators (longitudinal polarization) for H1 and ZEUS
- Detector Upgrades:
 - Silicon-Micro-Vertex detector,
 - improved forward tracking,
 - new luminosity measuring system
- 2001-2002
 - Re-commissioning of HERA (achieved design specific luminosity)
 - Beam currents limited by poor background conditions
 - Understanding and improving background conditions
 - Achieved 60% longitudinal polarization within a few days

Status and Prospects

- March-July 2003
 - Shutdown for background improvements
 - Presently startup of HERA
- End September
 - Start luminosity operation
 - Few 10pb⁻¹ expected this year
 - Sufficient to establish polarization dependence
- HERA operation until 2007
 - Goal 1fb⁻¹ with polarization
 - Precision data at high x,Q²
 - Chiral structure
 - Precision heavy flavor physics

Conclusions

- Deep Inelastic Scattering
 - Charged Current cross section measured up to Q²=60,000 GeV²
 - M_w measured in space-like region
 - Extracted structure function F_2^{cc}
- Search for New Physics
 - New limits: Lepton-flavor violation in tau production
 - New limits: Single-top production
- Deeply Virtual Compton Scattering
 - $s(g^*p \rightarrow gp)$ measured for 2 < Q²< 100GeV², 30 < W < 140 GeV
 - $s(g^*p \rightarrow gp)$ rises steeply with W \rightarrow hard process
- Jets in Photoproduction
 - Scaling violations observed in jet photoproduction for first time.
 - a_s extracted from photoproduction for first time:
 - very precise error, comparable with world average
- Looking forward to high luminosity data with polarization