Deep inelastic diffractive scattering at HERA

Pierre Van Mechelen University of Antwerpen Pierre.VanMechelen@ua.ac.be

(on behalf of the H1 and ZEUS Collaborations)

QCD 03 10th International QCD Conference 2-9th July 2003 Montpellier (France)

Outline

- Introduction
- Measurement of the cross section for deep inelastic diffraction
- Regge-QCD analysis
- Model comparisons
- Ratio of diffractive to inclusive DIS

HERA, H1 and ZEUS

Deep inelastic diffractive scattering at HERA

The process $ep \rightarrow eXY$

Kinematics:

• longitudinal momentum fraction of the proton carried by the colourless exchange:

$$x_{IP} = \frac{q \cdot (P - p_Y)}{q \cdot P} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

• longitudinal momentum fraction of the colourless exchange carried by the struck quark: $x = O^2$

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

Cross section:

• reduced cross section defined through: $1^{3} D$

$$\frac{\frac{d \sigma}{dx_{IP} dx dQ^{2}}}{\frac{4\pi \alpha^{2}}{xQ^{4}} (1 - y + \frac{y^{2}}{2}) \sigma_{r}^{D(3)}(x_{IP}, x, Q^{2})}$$

• relation to $F_2^{D(3)}$ and $F_L^{D(3)}$:

$$\sigma_r^{D(3)} = F_2^{D(3)} - \frac{y^2}{1 + (1 - y)^2} F_L^{D(3)}$$

QCD and Regge factorization

QCD hard scattering factorization:

 $\sigma^{\gamma^* p \to p^X} = \sigma^{\gamma^* i} \otimes f_i^D$

- σ^{γ*i} the universal partonic cross section (same as in inclusive DIS)
- *f*_i^D the parton distribution function for a parton *i* under the constraint that the proton survives the diffractive scattering (*f*_i^D should obey the DGLAP evolution equations)

Regge factorization:

$$f_i^D(x, Q^2, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot f_i^{IP}(\beta = x/x_{IP}, Q^2)$$

- $f_{I\!P/p}$ "pomeron flux factor" (can be parameterized according to Regge theory)
- $f_i^{I\!P}$ "pomeron parton distribution"

Diffractive cross section at medium Q^2

- Regge fit: parameters: $\alpha_{IP}(0), A_{IP}(\beta, Q^2), A_{IR}(\beta, Q^2)$ σ_r from different x_{IP} regions overlap $\sigma_r^{D(3)}(x_{IP}, \beta, Q^2) = f_{IP}(x_{IP}) \cdot A_{IP}(\beta, Q^2)(+IR)$ • σ_r from different x_{IP} regions overlap
 - positive scaling violations in most of the phase space

 $\alpha_{IP}(0) = 1.173 \pm 0.018 \text{ (stat.)} \pm 0.017 \text{ (syst.)}^{+0.063}_{-0.035} \text{ (model)}$

 $f_{IP}(x_{IP}) = \int_{t}^{t_{min}} e^{B_{IP}t} / (x_{IP}^{2\alpha_{IP}(t)-1}) dt$

H1 preliminary

NLO DGLAP QCD fit

- quark and gluon densities are parameterized as Chebychev polynomials at starting scale $Q_0^2 = 3 \text{ GeV}^2$
- fit also includes high Q^2 data (200 < Q^2 < 800 GeV²)
- subleading reggeon exchange is included using the pion structure function

•
$$\chi^2$$
/ndf = 308.7/306

• propagation of statistical, systematic experimental and theoretical errors

momentum fraction carried by gluons: $75 \pm 15\%$

Diffractive cross section at high Q^2

- [GeV²] improved statistics and kinematic range
 200 compared to previous measurement
 - good agreement between data sets
 - extrapolation of NLO fit to medium Q^2 data works fine
 - subleading trajectory needed at high x_P and low β

Diffractive cross section at low Q^2

Special run with minimally biased triggers to access low Q^2 :

- at low Q², α_P(0) is consistent with the soft pomeron intercept of 1.08
- H1 data suggest a rise of $\alpha_{IP}(0)$ with Q^2

 $\alpha_{IP}(0) = 1.110 \pm 0.020 \text{ (stat.)} \pm 0.024 \text{ (syst.)}_{-0.033}^{+0.068} \text{ (model)} \rightarrow \text{uncertainties still very large}$

Extrapolation of QCD fit

H1 preliminary $x_{in} = 0.03$ **X_{IP} Ծ_rD(3)** x=0.00032, β=0.0107 x=0.005 , β=0.1667 0.05 x=0.005, β=0.0167 x=0.008, B=0.2667 0.05 n x=0.0008 , β=0.0267 x=0.013, B=0.4333 0.05 x=0.0013 , β=0.0433 x=0.02, β=0.6667 0.05 10³ x=0.002, B=0.0667 10^{2} $Q^2 [GeV^2]$ 0.05 H1 97 (\s=301 GeV, prel.) H1 99-00 (\s=319 GeV, prel.) H1 2002 σ, P NLO QCD fit x=0.0032 . B=0.1067 (√s=319 GeV, prel.) 0.05 ----- IP only extrapol. fit 10² 10³ Q² [GeV²]

scaling violations \rightarrow large gluon content extrapolation works fine in large Q^2 range

low and high Q^2 data provide additional constraints on the singlet and gluon distributions

Differential cross section $d\sigma/dM_X$

New Forward Plug Calorimeter :

- covers pseudorapidities
 4 < η < 5
- increases measurable range in $M_X (M_X < 35 \text{ GeV})$
- reduces the mass of the dissociation system $Y (M_Y < 2.3 \text{ GeV})$

Observations:

- for $M_X < 2$ GeV (resonance production) there is little dependence on W
- at higher M_X , a strong rise with W is observed at all Q^2 , compatible with the energy dependence of inclusive data

Comparison of SCI model to high Q^2 data

(c)

Soft Colour Interaction model:

(Edin, Ingelman, Rathsmann)

- "Generalized Area Law" (GAL) tends to favour interactions that make colour strings shorter
- free parameter: probability for a soft interaction to occur (tuned to lower Q^2 data)

- model with GAL better than original
- failure at low β / high Q^2 ?

Saturation model vs. low Q^2 data

(Golec-Biernat, Wüsthoff)

- at low x, the proton fluctuates in *qq/qqg* dipoles long before the interaction with the proton
- the Saturation model proposes a parameterization for the dipole-proton cross section:

$$\sigma(x,r^{2}) = \sigma_{0} [1 - \exp(-\frac{r^{2}}{4R_{0}^{2}(x)})]$$
$$R_{0}(x) = \frac{1}{GeV} (\frac{x}{x_{0}})^{\lambda/2}$$

- → colour transparency for small dipole sizes
- → saturation of the cross section towards low x/low Q^2

2-gluon exchange model

BEKW model:

(Bartels-Ellis-Kowalski-Wüsthoff)

- elastic scattering of *qq/qqg* off the proton through the exchange of two gluons in a net colour-singlet configuration
- full pQCD calculation that requires large transverse momentum for all outgoing partons $x_{\mathbb{P}} < 0.01$ to avoid valence quark region

Ratio of diffractive to inclusive σ_r

$$R = \frac{\sigma_r^D(x_{IP}, x, Q^2)}{\sigma_r(x, Q^2)}$$

ratio is reasonably flat as function of Q^2

r

same scaling violations are observed in diffractive and inclusive DIS

W dependence of $\sigma^{diff}/\sigma^{tot}$

- for $M_X < 2$ GeV, $\sigma^{diff}/\sigma^{tot}$ is falling with W
- for $M_X > 2$ GeV, $\sigma^{diff}/\sigma^{tot}$ is constant with W

the diffractive cross section has the same *W*-dependence as σ^{tot}

- the low M_X bins exhibit a strong decrease of $\sigma^{diff}/\sigma^{tot}$ with increasing Q^2
- for M_x > 8 GeV, no Q² dependence is observed

- High precision measurements of the diffractive reduced cross section in DIS have been performed by H1 and ZEUS in an increased region of phase space
- The data supports Regge factorisation (provided subleading trajectories can contribute) with a value for the pomeron intercept which is larger than for the soft pomeron
- New NLO QCD fits are available of the diffractive parton densities and can be used to test QCD hard scattering factorisation
- Models describe the data in general, but some new discrepancies are uncovered with the increased accessible phase space
- The ratio of diffractive to inclusive cross sections sugggest similar (W, Q^2) dynamics in both processes