Multi Leptons in ep Collisions at HERA

Analyses of multi-muon & and multi-electron production

Boris Leißner, RWTH Aachen

on behalf of the

collaborations

How are lepton pairs produced ? Two Photon Physics

e y p

- Cross sections for lepton pairs
 - Separation of elastic and inelastic processes
- Multi Leptons with high mass
 - Search for anomalous lepton production in the tail of di-lepton mass distributions
 - Looking for additional leptons
- Conclusions

- How are lepton pairs produced ?
 Two Photon Physics
- Cross sections for lepton pairs
 - ➡ Separation of elastic and inelastic processes
- Multi Leptons with high mass
 - Search for anomalous lepton production in the tail of di-lepton mass distributions
 - Looking for additional leptons
- Conclusions

- How are lepton pairs produced ?
 - **Two Photon Physics**
- Cross sections for lepton pairs
 Separation of elastic and inelastic processes
- Multi Leptons with high mass
 - Search for anomalous lepton production in the tail of di-lepton mass distributions
 - ➡ Looking for additional leptons
- Conclusions

- How are lepton pairs produced ?
 - **Two Photon Physics**
- Cross sections for lepton pairs
 Separation of elastic and inelastic processes
- Multi Leptons with high mass
 - Search for anomalous lepton production in the tail of di-lepton mass distributions
 - Looking for additional leptons

Conclusions

proton description: ELA: Form factors Quasi-ELA: Structure functions DIS: Quark-Parton-Model

MC Simulation: GRAPE

Electroweak tree-level ISR + FSR

MC Simulation: GRAPE Electroweak tree-level ISR + FSR

proton description: ELA: Form factors Quasi-ELA: Structure functions DIS: Quark-Parton-Model

MC Simulation: GRAPE Electroweak tree-level ISR + FSR

B. Leißner, Multi Leptons in *ep* Collisions - 3

Multi Lepton Selection at HERA

H1: $E_e > 5 \text{ GeV}$

ZEUS: $E_e > 10$ GeV

 $17^{\circ} < heta_e < 164^{\circ}$

Additional 3rd electron identified: $5^\circ \lesssim heta_e \lesssim 175^\circ$

Multi Lepton Selection at HERA

$$17^{\circ} < heta_e < 164^{\circ}$$

Additional 3rd electron identified: $5^\circ \lesssim heta_e \lesssim 175^\circ$

Multi Lepton Selection at HERA

ZEUS: $E_e > 10 \text{ GeV}$

 $17^{\circ} < \theta_e < 164^{\circ}$

Additional 3rd electron identified: $5^{\circ} \lesssim oldsymbol{ heta}_{oldsymbol{e}} \lesssim 175^{\circ}$

		$P_{t,min}^{l1}$ [GeV]	$P_{t,min}^{l2}$ [GeV]
	$\mu\mu$	2.0	1.75
	ee	10.0	5.0
ZEUS	$\mu\mu$	5.0	5.0
	ee	10.0	_

Cross Sections - Muon Pair Production at H1

Good agreement over 4 decades with SM

Elastic and Inelastic Production Processes

• elastic: $ep \longrightarrow ep\mu\mu$ $M_{had} = M_P$

• inelastic: $ep \longrightarrow e\mu\mu X$ $M_{had} > M_P + M_{\pi}$

Tag of inelastic Events:

- → Proton Remannt Tagger
- → Forward Muon Detector
- → LAr ($E_{\theta < 10^\circ}$)
- → No additional Tracks

 tagging efficiency: 92 % tagging misidentification: 13 %

Cross Sections - Elastic & Inelastic Muon Pairs

Both processes are well described by the SM!

Cross Sections - Electron Pair Production

Cross Sections - Electron Pair Production

Both cross sections are well described by the MC

▼ Phase Space:
$$y < 0.82$$
, $Q_e^2 < 1$ GeV

B. Leißner, Multi Leptons in *ep* Collisions - 8

now: scattered may enter the detector!

6 outstanding events at M	$I_{12} > 100 {\rm GeV}$
------------------------------------	--------------------------

Total:		
Sample	Data	SM
2e	105	118.2 ± 12.8
3 e	16	21.6 ± 3.0

$M_{12}>$	100 C	ieV:
Sample	Data	SM
2e	3	0.25 ± 0.05
3 e	3	0.23 ± 0.04

▼ $M_{12} = rac{\mathsf{mass of the highest}}{p_t}$ electrons

 $\checkmark \mathcal{L} = 115 \text{ pb}^{-1}$

now: scattered may enter the detector!

6 outst	tanding	events	at	M_{12}	>	100	GeV
---------	---------	--------	----	----------	---	-----	-----

Total:		
Sample	Data	SM
2 e	105	118.2 ± 12.8
3 e	16	21.6 ± 3.0

$M_{12} >$	100 G	ieV:
Sample	Data	SM
2e	3	0.25 ± 0.05
3 e	3	0.23 ± 0.04

▼ $M_{12} = rac{\mathsf{mass of the highest}}{p_t \; \mathsf{electrons}}$

 $\checkmark \mathcal{L} = 115 \text{ pb}^{-1}$

now: scattered may enter the detector!

Total:		
Sample	Data	SM
2 e	105	118.2 ± 12.8
3 e	16	21.6 ± 3.0

 $M_{12} > 100 \text{ GeV}$:

Sample	Data	SM
2 e	3	0.25 ± 0.05
3e	3	0.23 ± 0.04

★ $M_{12} = rac{ ext{mass of the highest}}{p_t ext{ electrons}}$

 $\mathbf{X} \mathcal{L} = 115 \text{ pb}^{-1}$

6 outstanding events at $M_{12} > 100 \,\, {
m GeV}$

now: scattered may enter the detector!

Total:		
Sample	Data	SM
2e	105	118.2 ± 12.8
3 e	16	21.6 ± 3.0

 $M_{12} > 100 ext{ GeV}:$ Sample Data SM 2e 3 0.25 ± 0.05 3e 3 0.23 ± 0.04

▼ $M_{12} = rac{ ext{mass of the highest}}{p_t ext{ electrons}}$

 $\mathbf{X} \mathcal{L} = 115 \text{ pb}^{-1}$

6 outstanding events at $M_{12} > 100 \text{ GeV}$

Multi Electrons Events with $M_{12} > 100 \text{ GeV}$

Data and MC are in good agreement!

-2

Total:

Sample	Data	SM
2e	191	213.9 ± 3.9
3 e	26	34.7 ± 0.5

$M_{12} > 100 \; { m GeV}$:

Sample	Data	SM
2e	2	0.77 ± 0.08
3 e	0	0.37 ± 0.04

Larger expectation than H1 due to: Iarger polar angular range higher background

Data and MC are in good agreement!

-2

Total:

Sample	Data	SM
2e	191	213.9 ± 3.9
3 e	26	34.7 ± 0.5

$M_{12} > 100$ GeV:

Sample	Data	SM
2e	2	0.77 ± 0.08
3 e	0	0.37 ± 0.04

Larger expectation than H1 due to: Iarger polar angular range higher background

Data and MC are in good agreement!

Total:

Sample	Data	SM
2 e	191	213.9 ± 3.9
3 e	26	34.7 ± 0.5

 $M_{12} > 100 \text{ GeV}$:

Sample	Data	SM
2e	2	0.77 ± 0.08
3 e	0	0.37 ± 0.04

Larger expectation than H1 due to:

- **▼** larger polar angular range
- **▼** higher background

Data and MC are in good agreement!

-22-

Total:

Sample	Data	SM
2 e	191	213.9 ± 3.9
3 e	26	34.7 ± 0.5

$M_{12} > 100$ GeV:

Sample	Data	SM
2e	2	0.77 ± 0.08
3 e	0	0.37 ± 0.04

Larger expectation than H1 due to:

- **▼** larger polar angular range
- **▼** higher background

Multi Leptons with high Mass - Muons at HERA

B. Leißner, Multi Leptons in ep Collisions - 12

Multi Leptons with high Mass - Muons at HERA

Doubly Charged Higgs at H1

Only 1 event of the 6 high mass events is kinematically compatible with $H^{\pm\pm}$ (Charge + $\sum p_t^e$)

Conclusions

Cross Sections for Lepton Pair Production

- $\mu\mu$: Inclusive, Separation Elastic & Inelastic *ee*: y < 0.82, $Q^2 < 1$
- All measured cross sections agree well with the SM !

- Multi Leptons at high Mass $M_{12} > 100$ GeV:
 - \blacktriangleleft No high mass events in $\mu\mu$!
 - ZEUS: Good agreement in 2e/3e
 - ✓ H1: Access in 2e/3e ?

		DATA	SM
	$\mu\mu$	0	$\lesssim 0.1$
ZEUS	2e	2	0.77 ± 0.08
	3 e	0	0.37 ± 0.04
	$\mu\mu$	0	$\lesssim 0.1$
H1	2e	3	0.25 ± 0.05
	3 e	3	0.23 ± 0.04

Conclusions

• Cross Sections for Lepton Pair Production μμ: Inclusive, Separation Elastic & Inelastic

- *ee*: y < 0.82, $Q^2 < 1$
- All measured cross sections agree well with the SM !

Multi Leptons at high Mass

- No high mass events in $\mu\mu$!
- ZEUS: Good agreement in 2e/3e
- ✓ H1: Access in 2e/3e ?

$M_{12} > 100$ GeV:

		DATA	SM
	$\mu\mu$	0	$\lesssim 0.1$
ZEUS	2e	2	0.77 ± 0.08
	3 e	0	0.37 ± 0.04
	$\mu\mu$	0	$\lesssim 0.1$
H1	2e	3	0.25 ± 0.05
	3e	3	0.23 ± 0.04

B. Leißner, Multi Leptons in ${oldsymbol ep}$ Collisions $\,$ - 15

B. Leißner, Multi Leptons in ${oldsymbol ep}$ Collisions $\,$ - 16

Additional Plots - ZEUS: E_T^e & θ^e Distributions

Additional Plots - H1: More Electron Distributions I

Multi-electron Analysis

Additional Plots - H1: More Electron Distributions II

H1: More high mass events

Multi-electron Event M(12)=111 GeV

2e

Multi-electron Event M(12)=113 GeV

3e

