Exclusive Vector Meson Production and Inclusive K⁰_SK⁰_S Final State in DIS at HERA

M. Barbi *McGill University* For the H1 and Zeus Collaboration

Outline:

¥ Exclusive vector meson production
 ¥ Summary

First observation of resonances in inclusive

 $K_8^0 K_8^0$ final state in DIS

Summary

e' At HERA:			VM = ρ , ω , ϕ , J/y , ψ (2S), etc
W _{yp} W _{yp} soft	' M /I _{VM}) - p'	$\begin{array}{c} q \\ \uparrow \mathbf{R} \\ \gamma^* \\ \overline{q} \\ \underline{p} \\ \mu \end{array}$	p' p' p'
Soft (Regge + VDM)			Hard (pQCD)
$\frac{d\sigma}{dt} \propto W^{4(\alpha_{P}(t)-1)} e^{-b(W) t }$ $\alpha_{P}(t) = \alpha_{P}(0) + \dot{\alpha_{P}} t$ At low $ t \Rightarrow \sigma(W) \propto W^{0.22}$	$\frac{Cro}{\sigma(d)}$	ss section $W) \propto W^{\delta}$	$\sigma \propto \left[xg(x, Q_{eff}^2) \right]^2 x \approx 1/W^2$ Gluon from fit to F ₂ scaling violation $\Rightarrow \sigma(W) \propto W^{0.8}$
	Scale		Q^2 , $ t $, M_{VM}^{2}
$b(W)=b_0+4\alpha'\ln W b \propto R^2$	Transv. size of the interaction region		Small size. No W dependence.

Elastic VM in photoproduction $(Q^2 = 0)$

A first look:

J/ψ Photoprod. in bins of W and comparison to LLA calculations

Looking at high M_{∨M} (consistent with hard regime ⇐ previous slide)

Leading Log. Approx. (LLA) pQCD with different gluon parametrisations

Models sensitive to input parametrisation of the gluon density

Models with $\sigma \propto \left[xg(x, Q_{eff}^2) \right]^2$

in reasonable agreement with data

Indeed, $M_{\rm VM}$ is a hard scale

Steepness of ρ^0 and J/ Ψ cross-section

Can Q2 provide a hard scale?

 $\frac{d\sigma}{dt} \propto e^{-b|t|}$

$$b \propto R^2 \approx R_p^2 + R_{VM}^2$$

R is the transverse size of the interaction region

⇒ **R** decreases with Q² for ρ^{0} ⇒ **R** already small for J/ ψ at small Q²

And the power-law W^{δ} dependence? \Rightarrow

W-dependence of elastic ρ^0 and J/ ψ in bins of Q² (PhP and DIS)

ZEUS

Photoproduction of proton-dissoc. VM at high |t|

What about |t|?

Typical elastic VM production has |t|<1GeV². Use proton dissociation to reach higher |t|

Use BFKL LLA approach to fit data (Forshaw and Poludniowski)

 $\hfill Q^2$, $M_{VM}{}^2$ and |t| set a hard scale.

Perturbative QCD predictions agree with data

Inclusive K_S⁰K_S⁰ final state in DIS

•QCD predicts the existence of hadrons made up by gluons (glueballs). From Lattice QCD calculations, the lightest glueball has J^{CP}=0⁺⁺ with a mass 1730±100 MeV.

•K_s⁰K_s⁰ couples to meson states with J^{CP}=(even)⁺⁺

Inclusive K_S⁰K_S⁰ final state in DIS

- \Rightarrow A total luminosity of 121 pb⁻¹ was used
- \Rightarrow Only events with at least 2 K_S⁰ were selected
- \Rightarrow Clean K_S^0 sample

Inclusive K_S^oK_S^o final state in DIS

First observation of J^{CP} =(even)⁺⁺ in DIS. Two states are observed a state consistent with f_2 '(1525) X(1726) (is this the $f_0(1710)$?)

A third state is observed in the (problematic) 1300 MeV mass region, consistent with the f2(1270)/a2(1320) interference

Inclusive K_S⁰K_S⁰ final state in DIS

 $\Rightarrow K_S^0 K_S^0$ in the Breit-frame

Current region in DIS is equivalent to an e⁺e⁻ hemisphere

$$2x\vec{p} + \vec{q} = 0$$

Inclusive K_S⁰K_S⁰ final state in DIS

- □ First observation of resonances in K_S⁰K_S⁰ final state in DIS was reported
- □ Two states are observed in the 1300 MeV, 1500 MeV mass region consistent with $f_2(1270)/a_2(1320)$ and $f_2'(1525)$
- Another state X(1726) is observed, probably the $f_0(1710)$ (a glueball candidate)
- □ States are produced in a gluon rich environment

Hard regime (pQCD)

Photon mainly longitudinally polarized Large Q^2 , M_{VM} or |t| qq system is small, probes the proton

MM

p

n

.....

n

Photoprod. of proton-dissoc. VM at high |t|

Dependence at large |t| not exponential:

⇒ indication that large |t| may provide a hard scale to apply perturbative QCD
 Forshaw and Poludniowski fitted the ZEUS data for p-dissociative photoproduction of ρ⁰, φ and J/ψ mesons (hep-ph/0107068):

> BFKL LLA approach: consistent with data

> two-gluon-exchange approach at LO: inadequate

 J/ψ cross-section and QCD models (PhP and DIS)

⇒ QCD models FKS and MRT(CTEQ5M) are in good agreement with data

Diffractive Photoproduction of \psi(2S) - pQCD

-> Cross-section suppressed with respect to that of J/y -> Steeper W dependence

pOCD

p

-> Overall R \approx 0.166 consistent with pQCD prediction

W-dependence of elastic ρ^0 and J/ ψ in bins of Q² (PhP and DIS)

Extras..... KsKs final state

Scalar and Tensor Mesons

Masses 1-2 GeV, scalar and tensor mesons much heavier than the pseudoscalars

QCD: richer than Quark Model, predicts gluon states with J^{PC} = 0⁺⁺,2⁺⁺, I=0

KsKs final state couples only to J^{PC}=(even)⁺⁺ and it is CLEAN. This is the golden channel (given statistics) to look for scalar and tensor meson resonances

Production mechanisms in DIS

M. Barbi

Gluon rich processes

K_S⁰K_S⁰ final state in DIS

Observation of J=even meson resonances in ep

ZEUS ZEUS Events/30MeV ZEUS (prel.) 95-00 a,(1320)/f,(1270) a,(1320)/f,(1270) ZEUS (prel.) 95-00 120 ----- MC phase-space f₂'(1525) f₂'(1525) 100 f_o(1710) fo(1710) 80 'f,(1980)'' 'f,(1980)'' 60 60 40 40 20 20 D D 2.6 1.2 2.4 2.6 1.2 1.6 1.8 2 2.2 2.4 1 1.6 1.8 2 2.2 1.4 1.4 M(K⁰_sK⁰_s) (GeV) M(K⁰_sK⁰_s) (GeV)

cosKK < 0.92 cut

K_S⁰K_S⁰ final state in DIS

⇒ Attempt to include the 1980 MeV mass region
ZEUS

How well a smooth background describes the data:

$$SL \approx \frac{1}{\sqrt{2\pi}} \int_{\sqrt{2\chi^2} - \sqrt{2n-1}}^{\infty} e^{-x^2/2} dx$$

It is less than 1% likely that a smooth distribution describes the data.

 $e^+e^- \rightarrow \gamma\gamma \rightarrow K_s K_s$

If f(1710) is a glueball it should have small coupling to $\gamma\gamma$

Sepehr Saremi