Hard Processes in ep-Scattering

Hans-Christian Schultz-Coulon Universität Dortmund [representing the H1 and ZEUS Collaborations]

PIC 2003, Zeuthen, June 2003

Inclusive DIS Jet Physics Searches at HERA

The HERA ep-Collider @ DESY/Hamburg

 $\sqrt{s} = 320 \, \text{GeV}$

Inclusive Deep-Inelastic Scattering

HERA [& Fixed Target] F_2 -Measurements

$$\mathbf{F}_{2}(\mathbf{x},\mathbf{Q}^{2}) = \sum e_{q}^{2} \mathbf{x} q(\mathbf{x},\mathbf{Q}^{2})$$

Precision: 2-3% (bulk region)

Scaling violations at low x < 10^{-2} dF₂/dlogQ² ~ g(x,Q²)· $\alpha_s(Q^2)$

From NLO QCD Fits:

Quark densities Gluon density Strong coupling constant

Determination of PDFs

fitting DIS data from HERA and Fixed Target Experiments

Procedure:

- Assume parametric form of parton distribution functions at starting scale Q²₀~O(5 GeV²).
 [H1: 4 GeV²; ZEUS: 7 GeV²].
 [# Parameters: O(10)]
- Fit all data by evolving the PDFs to higher Q²

Parametric Forms:

- $xg(x) = ax^{b}(1-x)^{c} \zeta(x)$
- $xu(x) = a'x^{b'}(1-x)^{c'} \xi(x)$

e.g.: H1
$$\rightarrow \zeta(x)$$
 = 1+d \sqrt{x} +ex
ZEUS $\rightarrow \zeta(x)$ = 1

$xg(x,Q^2)$ — Comparison of Results

Independent fits Experimental errors only

Different approaches Different goals [H1: $g(x) \& \alpha_s$, Zeus: PDFs]

Parametric forms: Influence of choice to be investigated

moment analysis based on Bernstein polynomials

systematic error includes:

NNNLO correction estimate higher twist effects

NNLO (and still improved precision) promises world beating α_s from HERA

Determination of F_L

Contributes only @ high y

DIS cross section:

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \left\{ \left[1 - (1-\gamma)^{2} \right] F_{2}(x,Q^{2}) - \gamma^{2}F_{2}(x,Q^{2}) \right\}$$

 $F_L \sim \alpha_s g(x) \rightarrow \text{constrains } xg(x)$ Provides important QCD test

Direct measurement requires data at different cms-energies

Indirect determination possible assuming F_2 to be known

$$F_L \sim F_2 - \sigma_r$$

extrapolation method

also: derivative method shape method

F_L at fixed y=0.75

Data in basic agreement with NLO QCD Fit to F_2 data. New low Q^2 results provide additional constraints.

Direct F_L -Measurement

using radiative deep-inelastic scattering data

DIS Cross Section @ High Q^2

Neutral Current:

$$F_{2} \sim x \sum_{i}^{i} [q_{i} + \bar{q}_{i}]$$
$$xF_{3} \sim x \sum_{i}^{i} [q_{i} - \bar{q}_{i}]$$

Use e⁺p/e⁻p data to extract xF₃ Sensitivity to valence quark density

Charged Current:

$$d^{2}\sigma(e^{+}) \sim x[d+\bar{u}]$$

 $d^{2}\sigma(e^{-}) \sim x[u+\bar{d}]$

Use e⁺p/e⁻p data to disentangle up-/down-quark content at high x

NC and CC Cross Sections

Standard Model describes cross sections over large range of Q^2 Electroweak 'unification' at large $Q^2 \sim M_Z^2$

e⁺p/e⁻p cross sections differ due to different quark contributions helicity structure of EW interactions

NC Reduced Cross Section

Uncertainty dominated by statistical errors Needs more luminosity from HERA II

Dijets in Photoproduction The Structure of Real Photons ($Q^2 \approx 0$)

Inclusive γp Jet Cross Section

α_{s} Result from Jets

3-Jet/2-Jet Ratio in DIS

Dijet and Trijet DIS Cross Section

Azimuthal Asymmetry of Jets [A clean test of perturbative QCD]

Q² Dependence of azimuthal asymmetry of jets

$$\frac{1}{\sigma} \cdot \left[\frac{d\sigma}{d|\phi_{jet}^{B}|} \right] = \frac{1}{\pi} \left[1 + f_1 \cos(\phi_{jet}^{B}) + f_2 \cos(2\phi_{jet}^{B}) \right]$$

 $f_1 = -0.0273 \pm 0.0188_{-0.0175}$ [Data] $f_1 = -0.0003 \pm 0.0025_{-0.0044}$ [NLO]

f₂ = +0.0947 ^{+0.0158}_{-0.0195} [Data] f₂ = +0.0984 ^{+0.0074}_{-0.0131} [NLO]

NLO pQCD calculation in agreement with measurement

<u>DGLAP evolution</u>: k_{t} -ordering: $k_{t,1}^2 \leftrightarrow \dots \leftrightarrow k_{t,n}^2 \leftrightarrow Q^2$ Gluon density: $g(x,Q^2)$

> k_t ≈ 0 Correct?

BFKL, CCFM evolution:

non- k_{t} -ordering Gluon density: $g(x,Q^{2},k_{t}^{2})$

> k_t > 0 possible.

Azimuthal Correlations

in inclusive dijet production

- NLO fails to describe the S-distribution
 [as expected due to Δφ > 120°]
- LO Monte Carlo [RAPGAP] [with k_t-ordered parton emission]
 - direct only: fails
 - dir. + res.: fails at small x
- Substantial contribution from partons/gluons with non-zero k_t

- Best description of S-distribution by ARIADNE [non-k_t-order parton emission (CDM)]
- CASCADE Monte Carlo [incorporates CCFM evolution equations]

Fails for both avail. sets of unintegr. gluon distributions [difference: hardness of kt-spectrum]

Measurement provides

 Constraints on unintegrated gluon density

Searches at HERA

Contact Interactions Large Extra Dimensions Compositeness **Excited Fermions** R_p-violating SUSY Magnetic Monopoles Odderons Instantons

Leptoquarks Lepton Flavour Violation Isolated High P_t Leptons Multi-Lepton Events Single Top Production Flavour Changing NC

Many limits — Excess seen in two areas

High P_t Leptons at High P^X_t Data/Expectation comparison

H1	Electrons	Muons	Taus
94-00 e⁺p (104.7 pb⁻¹)	obs/exp.(W)	obs/exp. (W)	obs/exp. (W)
25 < P _T < 40 GeV	1 / 0.94 ± 0.14 (0.82)	3 / 0.89 ± 0.14 (0.77)	_
P _T > 40 GeV	3 / 0.54 ± 0.11 (0.45)	3 / 0.55 ± 0.12 (0.51)	
ZEUS	Electrons	Muons	Taus
94-00 e [±] p (130.1 pb ⁻¹)	obs/exp.(W)	obs/exp. (W)	obs/exp. (W)
P _T [×] > 25 GeV	2 / 2.90 ^{+ 0.59} (45%)	5 / 2.75 ^{+ 0.21} (50%)	2 / 0.12 ⁺ 0.02 (83%)
P _T [×] > 40 GeV	0 / 0.94 ^{+ 0.11} (61%)	0 / 0.95 ^{+ 0.14} (61%)	1 / 0.06 ⁺ 0.01 (83%)

Anomalous Top Production in FCNC

- 2 electrons with P¹⁽²⁾_t>10 GeV (5 GeV) [with $20^{\circ} < \theta < 150^{\circ}$]
- 3rd electron (if any) with $E_3 > 5$ GeV (10 GeV) [with $5^{\circ} < \theta < 175^{\circ}$]

Observation of 6 events with M_{12} > 100 GeV

Multi-Electron Analysis

Good overall description of data by MC prediction

Multi-Electron Analysis

M ₁₂ > 100 GeV		H1 Prel.
	Data	SM
2e	3	0.25±0.05
3e	3	0.23±0.04

Excess @ high M_{ee} >100 GeV

IC Dural

 $100 C_{-1}$

M ₁₂ > 100 Gev		ZEUS Prei.
	Data	SM
2e	2	0.77±0.08
3e	0	0.37±0.04

Needs confirmation with HERA II data

Summary

Proton Structure

Improved precision — F_2 error ~2-3% (bulk) PDF extraction — extraction of xF_3 F_L measurements provide important QCD test.

QCD Tests and $\alpha_{\text{s}}\text{-Measurements}$

 α_{s} results competative — NNLO DIS promises world beating α_{s} pQCD tests using azimuthal jet asymmetries

QCD Dynamics

Study of azimuthal jet separation provides constraint on unintegrated gluon distributions

Searches at HERA

Excess seen for: Isolated leptons, multi-leptons