Observation of Events with Isolated Leptons and Missing Transverse Momentum at Hera Observation of Multi-lepton Events at Hera

XXXVIIIth Recontres de Moriond

Tancredi.Carli@cern.ch

New experimental results on interesting events observed at HERA

Events with Isolated Leptons and P_T^{miss} at HERA

Signature:

- isolated lepton
- large missing transverse momentum p^{miss}
- large hadronic
 transverse momentum

Main background: W production, e.g.:

incl.
$$\sigma(ep \rightarrow eW^{\pm}X) \approx 1pb$$

for $P_{T}^{X} > 25$ GeV :
 $\sigma(W^{+}) = 0.15 pb$
 $\sigma(W^{-}) = 0.08 pb$

- NLO correction 10-20%

- residual scale dependence: 5-20%

Diener, Spira, Schwanenberger: hep-ph/0203269

In the above numbers a cut on

 $E - P_z < 47 \text{ GeV} (electron) P_T^{\mu} > 10 \text{ GeV} (muon)$

is included

No Excess of isolated lepton events above SM prediction in ZEUS

H1/ZEUS: Isolated Leptons and Pt^{miss} Summary I

Electron/muon combined:

	ł	-11	ZEUS			
	Data	SM	Date	a SM		
overall	18	12.4 ± 1.7	36	32.6 ± 3.8		
$p_T^X > 25 GeV$	10	2.9 ± 0.5	57	5.7 ± 0.6		
$p_T^X > 40 GeV$	6	1.1 ± 0.2	0	1.9 ± 0.2		

excess seen in H1 data: $O(10^{-3})$, no excess in ZEUS data Combined (H1+ZEUS): $O(10^{-2})$

H1 excess about equally shared in electron/muon channel

No conclusion possible from study of hadronic channel (background too large)

Tau-Identification using Internal Jet Structure:

Needs reduction of QCD jet background by 1000 to see W->Tau->hadrons

Tau-Lepton Identification at ZEUS

Incl. charged current sample (only cut on missing P_T)

Combine 6 estimators to one discriminant D

Probability density estimation based on range searching (hep-ph/0211019)

Search for Isolated Tau-Leptons and Missing Pt

Example of Tau Candidate

 $P_{T}^{CAL} = 39 \text{ GeV} \qquad P_{T}^{X} = 37 \text{ GeV} \qquad M_{T} = 68 \text{ GeV}$

Status: Isolated Lepton Events at HERA I

Multi-electron Events at Hera

H1: $20^{\circ} < \theta_{e} < 150^{\circ}$

Zeus : $17^{\circ} < \theta_{p} < 164^{\circ}$

H1/Zeus : third electron allowed in : $5^{\circ} < \theta_{e} < 175^{\circ}$

Different acceptances for SM expectation in the experiments

SM Process: Multi-Electron Events

(a) Bethe-Heitler type diagrams

incl. $\sigma(ep \rightarrow eeX) \approx$ 200 - 300pb depending on cuts

(b) QED-Compton type diagrams + electroweak diagrams

H1 Two -and Three-electron Result

H1 Two -and Three -electron Result

Conclusions

Interesting events with isolated leptons and missing transverse energy observed After final e/mu analysis situation remains unclear H1 has a signal, ZEUS is compatible with SM

Preliminary analysis in Tau-Channel Two interesting events, for the first time ZEUS "confirms" a signal

H1 observes 3 ee and 3 eee outstanding events with M_{ee}>100 GeV ZEUS is compatible with SM

Hint for new physics or statistical fluctuation ? Fully analysed HERA-I data give us puzzle Needs HERA-II data to clarify situation

Are the Tau-Data Compatible with e/mu-Data?

Three different scenarios: 1) No signal, background fluctuates 2) strong anomalous W production σ_{τ} =2/L (100%) 3) strong anomalous W production σ_{τ} =0.2/L (5%)

			No signal		large W		small W	
Measurement	N _{obs}	N _{exp}	N _{sig}	$P(\frac{N_{obs}}{N_{exp}})$	N _{sig}	$P(\frac{N_{obs}}{N_{exp}})$	N _{sig}	$P(\frac{N_{obs}}{N_{exp}})$
ZEUS τ – search	2	0.2	0	0.7%	2	63%	0.2	4%
ZEUS $e/\mu P_T^X > 25 GeV$	7	5.7	0	78%	56	10 ⁻¹³	5.6	13%
ZEUS $e/\mu P_T^X > 40 GeV$	0	1.9	0	15%	23	10 ⁻⁷	2.3	1.5%
H1 $e/\mu P_T^X > 25 GeV$	10	2.9	0	0.1%	51	10 ⁻⁹	5.1	81%
H1 $e/\mu P_T^{\times} > 40 \text{ GeV}$	6	1.1	0	0.1%	20	10-4	2	96%

Small W signal in Tau-analysis is not excluded from e/mu analysis Need more data ! -> Hera-II

Tau-1 Candidate

 $P_{T}^{CAL} = 37 \text{ GeV}$ $P_{T}^{X} = 48 \text{ GeV}$ $M_{T} = 32 \text{ GeV}$

Details of H1 events

Run	Event	Lepton	P_T^l /GeV	P_T^X /GeV	M_T /GeV	$M_{l\nu}$ /GeV	Charge
236176	3849	e	$10.1^{+0.4}_{-0.4}$	$25.4^{+2.8}_{-2.5}$	$26.1^{+1.1}_{-1.1}$		unmeasured
186729	702	μ^+	51^{+11}_{-17}	$66.7^{+4.9}_{-4.9}$	43^{+13}_{-22}		$+$ (4.0 σ)
188108	5066	μ^-	$41.0_{-5.5}^{+4.3}$	$26.9^{+2.2}_{-2.3}$	$81.3^{+8.2}_{-11}$	$86.1_{-8.7}^{+6.8}$	$-(8.3\sigma)$
192227	6208	μ^-	73^{+9}_{-12}	$60.5_{-5.4}^{+5.5}$	74^{+20}_{-25}		$-(7.0\sigma)$
195308	16793	μ^+	60^{+12}_{-19}	$33.3^{+3.6}_{-3.6}$	85^{+25}_{-37}		$+ (4.2\sigma)$
248207	32134	e^+	$32.0^{+0.8}_{-0.9}$	$42.7^{+3.9}_{-4.1}$	$62.8^{+1.8}_{-1.8}$		$+(15\sigma)$
252020	30485	e^+	$25.3^{+1.0}_{-1.0}$	$44.3^{+3.6}_{-3.6}$	$50.6^{+1.9}_{-2.0}$	79^{+12}_{-12}	$+$ (40 σ)
266336	4126	μ^+	$19.7_{-0.8}^{+0.7}$	$51.5^{+3.8}_{-4.0}$	$69.2^{+2.4}_{-2.6}$		$+(26\sigma)$
268338	70014	e^+	$32.1_{-0.8}^{+0.9}$	$46.6^{+3.3}_{-3.3}$	$87.7^{+2.5}_{-2.4}$		$+(5.1\sigma)$
270132	73115	μ	64^{+38}_{-55}	$27.3^{+3.9}_{-3.9}$	140^{+71}_{-83}		$-(0.6\sigma)$
275991	29613	e^+	$37.7^{+1.0}_{-1.1}$	$28.4^{+5.7}_{-5.9}$	$74.7^{+2.3}_{-2.4}$		$+(37\sigma)$

Table 1: Kinematics and lepton charges of the events at high P_T^X (> 25 GeV). The invariant mass $M_{l\nu}$ is only calculated for those events with an observed scattered electron. The significance of the charge measurement in numbers of standard deviations is given in brackets after the sign. The first event listed was observed in e^-p data. The rest were observed in e^+p data.

Internal Jet Structure Observables

H1 NC Background Sample

H1 Lepton Pair Background Sample

