Heavy Flavour Production at HERA

Ekaterini Tzamariudaki MPI-Munich & NTUA

for the

Collaborations

introduction charm beauty summary

Introduction

• Heavy flavour production dominated by Boson Gluon Fusion (BGF) $\gamma g \rightarrow c c$ or $b \overline{b}$ $E_{e}=27.6 \text{ GeV}$

• Factorization:

ep Kinematics: $\sqrt{s} = 300, 320 \text{ GeV}$

 Q^2 : 4-momentum transfer squared

- \boldsymbol{X} : Bjorken \boldsymbol{X}
- \mathcal{Y} : Inelasticity
- W : Mass of the hadronic system

Two kinematic regimes:

 $Q^2 \approx 0$ \longrightarrow Photoproduction $Q^2 \ge 1 \text{ GeV}^2 \longrightarrow \text{DIS}$

Proton structure $\otimes \sigma_{\gamma g \to Q \overline{Q}} \otimes$ Photon structure \otimes Fragmentation function

Heavy Flavour Production at HERA

at LO contribution from direct

and resolved processes

• large charm contribution to F_2

MMM

• universality of the gluon

00000

000000

Katerina Tzamariudaki

study heavy flavour production mechanism

- m_c (m_b) provides a hard scale good testing ground for pQCD
- access parton densities in the proton and in the photon
- Q^2 and p_T (or E_T) also provide a hard scale
- sensitivity to the parton evolution model
- Fragmentation issues

(fragmentation probabilities for different hadrons, strangeness suppression, ratio V/(V+P), fragmentation function)

Theoretical Framework

Calculations in the DGLAP scheme

➢ Fixed order NLO calculations

(massive scheme)

heavy quark produced dynamically

• γp : FMNR • DIS : HVQDIS

➢ resummed NLL calculations

(massless scheme) heavy quark active flavour of proton or photon $p_t >> m_q$

• γ p : Cacciari et al., Kniel et al.

Matched scheme FONLL

(fixed order + NLL p_T resummation)

• Cacciari et al.

Fragmentation : non perturbative models

MC generators (ME + PS)

• AROMA: direct only, LO DGLAP evolution

• PYTHIA, RAPGAP, HERWIG:

direct + resolved, LO DGLAP

• CASCADE:

CCFM evolution k_t dependent gluon density

Charm tagging

500

ZEUS

Luminosity collected at HERA I : $\approx 120 \text{ pb}^{-1}$

Katerina Tzamariudaki

2.1

ZEUS

Heavy Flavour Production at HERA

Combinations / 0.2 MeV

Charm Fragmentation

ZEUS prel. (γp) $p_T(D, \Lambda_c) > 3.8 \text{ GeV}, \eta(D, \Lambda_c) < 1.6$	Combined e^+e^- data	H1 prel. (DIS)
$f(c \rightarrow D^+) = 0.249 \pm 0.014^{+0.004}_{-0.008}$	0.232 ± 0.010	$0.202 \pm 0.020^{+0.045}_{-0.033} {}^{+0.029}_{-0.021}$
$f(c \rightarrow D^0) = 0.557 \pm 0.019^{+0.005}_{-0.013}$	0.549 ± 0.023	$0.658 \pm 0.054^{+0.115}_{-0.148} {}^{+0.086}_{-0.048}$
$f(c \rightarrow D_s^+) = 0.107 \pm 0.009 \pm 0.005$	0.101 ± 0.009	$0.156 \pm 0.043^{+0.036}_{-0.035} {}^{+0.050}_{-0.046}$
$f(c \rightarrow \Lambda_c^+) = 0.076 \pm 0.020^{+0.017}_{-0.001}$	0.076 ± 0.007	
$f(c \rightarrow D^{*+}) = 0.223 \pm 0.009^{+0.003}_{-0.005}$	0.235 ± 0.007	$0.263 \pm 0.019^{+0.056}_{-0.042} {}^{+0.031}_{-0.022}$

Charm fragmentation fractions are universal

→ HERA errors competitive!

 $R_{u/d}$, γ_s , V/(P+V) also determined and in good agreement with w.a.

Measurement of the Fragmentation Function

Results on Fragmentation Function

D^* in DIS

Katerina Tzamariudaki

Jet Cross Section with D^* in DIS

H1: $D^* + 2$ jets (inclusive k_t algorithm in the Breit frame) $E_T^{\text{jet}} > 4,3 \text{ GeV}, -1 < \eta_{\text{lab}}^{\text{jet } 1,2} < 2.5$

Heavy Flavour Production at HERA

Katerina Tzamariudaki

47 pb^{-1}

1999, 2000

D^* Photoproduction

No electron tag 79 pb^{-1} $Q^2 < 1 \text{ GeV}^2$, 130 $< W_{\gamma p} < 280 \text{ GeV}$ $p_T^{D^*} > 1.9 \text{ GeV}$, $|\eta^{D^*}| < 1.6$

Large theoretical uncertainties due to scale, mass and fragmentation

- NLO below data (low p_T , $\eta > 0$)
- FONLL also below the data even below NLO at high p_T

• CASCADE too hard

Electron tag: 49 pb^{-1} $Q^2 < 0.01 \text{ GeV}^2$, $171 < W_{\gamma p} < 256 \text{ GeV}$ $p_T^{D^*} > 2.5 \text{ GeV}$, $|\eta^{D^*}| < 1.5$

Heavy Flavour Production at HERA

D^* Photoproduction double differential distributions

D^* +2 Jet Events

 $\approx 120 \ pb^{-1}$

 $p_T^{D^*} > 3 \text{ GeV}$ 2 jets: $E_T^{\text{jet}} > 5 \text{ GeV}, |\eta^{\text{jet}}| < 2.4,$ $M_{jj} > 18 \text{ GeV}$

Momentum fraction of photon in jets:

$$x_{\gamma}^{\text{obs}} = \frac{\sum_{j_1, j_2} (E_T^{j} e^{-\eta^{j}})}{2y E_e}$$

- Significant contribution from resolved ~40%
- MCs: good description of shape
- CASCADE different at high x_{γ}^{obs}
- NLO below data at low x_{γ}^{obs} (not shown)

Charm: Di-jet Angular Distributions

Heavy Flavour Production at HERA

Charm: Di-Jet Angular Distributions

• NLO DGLAP describes $x_{\gamma}^{\text{obs}} > 0.75$, but is too low for $x_{\gamma}^{\text{obs}} < 0.75$,

 CCFM (CASCADE) describes the shape, but the predicted cross section is too high

Heavy Flavour Production at HERA

Charm production – Summary

- Fragmentation Probabilities and Fragmentation Function measured good agreement with results from other experiments Charm fragmentation universal
- D^* production in DIS

Inclusive: CASCADE: good description of the data other models: problems with the η distribution D^* + jets: problems to describe the associated jet cross section

• D^* in photoproduction

Inclusive: Problems of NLO QCD and CCFM to describe the data

 D^* + jets: large charm component in the photon (LO+PS picture) NLO QCD does not describe this component well; shape is better described by MC models

Beauty in Photoproduction

for x_{γ} extrapolate muon phase space

Factor of 2 disagreement

Heavy Flavour Production at HERA

Beauty in DIS

 $Q^2 > 2 \text{ GeV}^2, 0.05 < y < 0.7$ 1 $\mu, p_t^{\mu} > 2 \text{ GeV}$ $E_T^{\text{Breit}} > 6 \text{ GeV}$

 $\sigma^{\rm vis} = (38.7 \pm 7.7^{+6.1}_{-5.0}) \, pb$

- QCD NLO (DGLAP): (Harris & Smith): $\sigma^{\text{vis}} = (28.0^{+5.3}_{-3.5}) \ pb$
- CASCADE (CCFM): good agreement $\sigma^{vis} \approx 35 \, pb$
- RAPGAP (DGLAP, LO+PS) too low

Heavy Flavour Production at HERA

Katerina Tzamariudaki

 $\approx 60 \ pb^{-1}$

Heavy Flavour double tag: $D^*\mu$ – Correlations

beauty: 0000000 charm: Frag. 000000000000

c-b separation using charge and angular correlations

Heavy Flavour Production at HERA

$D^*\mu$ – Correlations

Katerina Tzamariudaki

Beauty production – Summary

Current Status:

Data/QCD $\approx 2-3$ for $b\overline{b}$ production Independent of method p_t^{rel} , δ , $D^*\mu$

Differential analyses have shown that the excess is not localized in a specific corner of phase space

Beauty production is considered to be more safe in terms of theory

Summary

High statistics data on charm and beauty production lead to

more to come from final HERA-I data and even more from HERA-II

Overview: Results on Beauty Production

