Inclusive diffraction at ZEUS

Vincenzo Monaco **INFN** Torino

Low-x Workshop Nafplion (Greece) June 4-7, 2003

On behalf of

• experimental methods

- measurement of t and **F** distributions
- measurements of diffractive cross section - comparison with inclusive ep cross section
- diffractive cross section at low Q^2
- Data interpreted in terms of:
 - Regge phenomenology
 - color dipole models

Kinematics of diffractive *ep* scattering

Diffractive structure function

Cross section can be expressed in terms of diffractive structure function $F_2^{D(4)}$

$$\frac{d^4 \sigma_{ep}^{diff}}{d\beta dQ^2 dx_{IP} dt} = \frac{2\pi\alpha^2}{\beta Q^2} \left[1 + (1-y)^2 \right] F_2^{D(4)}(\beta, Q^2, x_{IP}, t)$$

Integrating over t:
$$\frac{d^3 \mathbf{s}}{d\mathbf{b} dQ^2 dx_{IP}}$$
 or $\frac{d^3 \mathbf{s}}{dM_X d \ln W^2 dQ^2} \longrightarrow F_2^{D(3)}(\mathbf{b}, Q^2, x_{IP})$

• ep Rexp triple-pole Regge theory suggests factorization:

$$F_2^{D(4)} = f_{IP/p}(x_{IP}, t) \cdot F_2^{IP}(Q^2, \beta) \qquad f_{IP/p}(x_{IP}, t) \approx e^{b_{IP}t} \cdot \frac{1}{x_{IP}^{2a_{IP}(t)-1}}$$

In resolved Pomeron models: $f_{IP/p}(x_{IP},t)$ Pomeron flux factor $F_2^{IP}(Q^2, b)$ Pomeron structure function (partonic distributions in the IP, pQCD evolution in hard diffraction)

• ep ReXN N not measured, more theoretical and experimental uncertanties

t-distribution (LPS)

More statistics needed to explore the high **b** region (large asymmetry expected)

M_X-method using Forward Plug Calorimeter

1998-99 data (4.2 pb⁻¹):

Forward Plug Calorimeter (FPC)

(acceptance for hadronic states from $h \sim 4$ to $h \sim 5$)

- kinematic coverage extended to higher $M_X(M_X \text{ range})$ increased by a factor 1.7) and lower W.
- reduced contribution from high-mass proton dissociation

Reduced beam-hole size in the rear direction

kinematic range extended to lower Q², higher W

	ZEUS 94	ZEUS 98-99
Q^2 (GeV ²)	7-140	2.2-80
W(GeV)	60-200	37-245
M_X (GeV)	<15	<35
M_{N}	<5.5 GeV	<2.2 GeV

Diffractive cross section (M_X -method)

W dependence (M_X -method)

Comparison with BEKW model

Bartels, Ellis, Kowalski and Wüsthoff,

Vincenzo Monaco

Pomeron structure function (M_X -method)

From the BEKW model:

$$F_2^{D(3)}(Q^2,\beta,x_{IP}) = f_{IP/p}(x_{IP},Q^2) \cdot F_2^{IP}(\beta,Q^2)$$

Parameterization of the flux factor: $f_{IP/p} = \frac{1}{2}$

$$rac{C}{x_{IP}} \cdot \left(rac{x_0}{x_{IP}}
ight)^{n(Q^2)}$$

C=1 $x_0 = 0.01$

$$F_2^{IP}(\beta, Q^2) = x_{IP} F_2^{D(3)}(x_{IP}, \beta, Q^2)|_{x_{IP}=x_0}$$

At low **b**, evidence for a rise of \mathbf{F}_2^{IP} as Q^2 increases

indication of pQCD evolution

Vincenzo Monaco

Diffractive cross section at low Q^2

New low Q^2 points at high M_X , high W

Transition to a constant cross section as $Q^2 \rightarrow 0$ (similar to what observed for the total cross section $\sigma^{\gamma^* p}$)

Main features of the data described by BEKW parameterization

g® qqg fluctuations dominant at low Q^2

Vincenzo Monaco

Conclusions

Diffractive cross section:

- recent data from ZEUS with improved precision and extended kinematic range
- W dependence of diffractive and total cross section similar at high Q^2
- Q^2 dependence of the diffractive cross section softens considerably for $Q^2 \otimes 0$
- data described by the dipole model of BEKW

Azimuthal asymmetry

 indication that the interference between L and T photons is small at low b