Leading baryon production at HERA

A.Garfagnini

Napflio, 6th June 2003

INFN – Padova for the H1 and ZEUS Collaborations

Highlights:

- ✓ Leading proton production models;
- ✓ Vertex factorization and violation:
 - absorption/re-scattering models;
 - Leading baryons w/ di-jet activity;
- ✓ Pion structure function.
- ✓ D* production w/ leading neutrons.

INFN

Introduction

Leading baryon production at small t in hadronic interactions \Rightarrow soft process. Conserving baryon number \rightarrow p or n in final state.

In particle exchange models: In standard fragmentation: baryon from exchange of virtual final state N from p remnant Pomeron, Reggeon (e.g. ρ, ω, f_2), π . e е e Exchange: p: isoscalar, isovector n: isovector. Х IP, IR, π Х p р p $(x_L = E_{p,n} / E_{beam}, p_t^2)$

Proton dipole picture

In the proton rest frame:

where:

- r ~ 0.2 fm/Q, transverse size of probe;
- ct ~ 0.2 fm (W²/2m_pQ²) scale over which photon fluctuations survive;

Tagging the leading baryon, can vary the impact parameter

✓ b ~ 0.2 fm/sqrt(t), with $t = (p - p')^2$.

Seeting these parameters experimentally, can scan the distribution of strongly interacting matter in hadrons.

Process scales

By means of semi-inclusive/exclusive processes, can probe different scales:

- Hard scale:
 - \rightarrow Q² for DIS samples;
 - $\rightarrow m_c^2$ for charm production;
 - → E_{τ} for jet requirements;

Soft scale:
 p_{τ} of the leading baryon.

Forward detectors acceptance

List of presented results

- ✓ "Leading neutron production in e⁺p collisions at HERA", Nucl. Phys. B 637 (2002) 3.
- ✓ ICHEP02 paper 824, "Properties of events containing leading neutrons in DIS and PHP at HERA".
- ✓ "Observation of photoproduction of D*±(2010) mesons associated with and energetic neutron", paper in preparation, results shown at DIS03.

✓ ICHEP02 paper 988, "Measurement of Dijet Cross-Section with Leading Neutrons in ep interactions at HERA".

ZEUS

LN energy spectra

LN cross section and energy spectra compared to different Monte Carlo production models:

- standard fragmentation Monte Carlo fail;
- π exchange needed to describe shape.

Proton energy spectra – model comparison

Shape and data normalization is compared to:

- ✓ standard fragmentation models
 → do not describe data;
- QCD inspired model, the Gluon-Iteracting model of Durães et al. Gives a better description;
- ✓ exchange models, need multiple processes (Pomeron, Reggeon, π° and π - Δ) to describe the data.

Vertex factorization

Under the factorization hypothesis, $\sigma(ep \rightarrow eNX) \propto G_{p,p'} \times G_{e,e'}$ i.e lepton vertex ~ independent of baryon vertex Direct implication of exchange models \Rightarrow the *ep* cross section factorizes, e.g. for π exchange, $\sigma(ep \rightarrow eNX) = f_{IP/p}(x_L,t) \times \sigma(eIR \rightarrow eX)$ IR flux in p Х Cross section dependence on baryon IP, IR, π, variables $(x_1 \text{ and } p_1^2)$ independent of those at the lepton vertex р

LP energy spectra

ZEUS 5 $\mathsf{r}^{\mathsf{LP}(3)} = \ 1/\sigma_{tot} \ d\sigma_{\gamma^* p \ \rightarrow \ X \ p}/dx_L$ Low-x 2003 – Napflio A.Garfagnini Ą 1 Ā þ **ZEUS 1995, 0.1 < Q^2 < 0.74 \text{ GeV}^2, 85 < W < 258 \text{ GeV}** $p_T^2 < 0.5 \text{ GeV}^2$ • ZEUS 1995, $3 < Q^2 < 254 \text{ GeV}^2$, 45 < W < 225 GeV○ Whitmore et al., pp \rightarrow pX, \sqrt{s} = 19.6 GeV, $p_T^2 < 0.5$ GeV² -1 10 0.6 0.7 0.8 0.9 **X**_L

LP normalized cross section for BPC ($0.1 < Q^2 < 0.74 \text{ GeV}^2$) and DIS ($3 < Q^2 < 254 \text{ GeV}^2$).

Clear diffractive peak at $x_{L} \sim 1$; cross section flattens for $x_{I} \leq 0.9$

For $x_{L} \leq 0.9$, $r^{LP(3)}$ consistent w/ pp data and $\gamma^{*}p$ data sets.

→ approximate vertex factorization.

Proton yield

ZEUS

F^{LP(2)}

Ratio multiplied by:

- ✓ fit to published ZEUS low Q² F₂ data (ZEUS Regge);
- ✓ F₂ parameterization (M.Botje QCD fit)

$$F_2^{LP(2)} = F(x_{Bj}, Q^2) < r^{LP(2)} >$$

 $\Rightarrow F_2, \text{ scaled down, well} \\ \text{describes } F_2^{\text{ LP}} \text{ (small} \\ \text{variations w/ } Q^2 \text{)}$

Result for neutrons similar

ZEUS

Factorization violation

Averaging $r^{LP(3)}$ over x and x_L reveals a small violation of factorization: 15-20% for Q² ~ 0.02 to 100 GeV² (somewhat higher for n)

- Different evolution of F_2 and $F_2^{LP(2)}$?

 Absorptive effects in the γ^{*}p system (smaller γ size at higher Q²)?

Factorization Violation

Within exchange picture, factorization can be violated, e.g. via rescattering models (D'Alesio & Pirner).

e.g. n production via π^+ exchange:

No rescattering, n detected

Rescattering, n lost (lower x_L , higher p_t)

DIS: $\gamma^* \sim \text{point like}$ PHP: $\gamma \sim \text{hadron like}$, (size ~ 1/Q), \Rightarrow rescattering more probable

In OPE $< r_{n\pi} >$ smaller at lower $x_L \Rightarrow$ more rescattering at lower x_L

Neutron x_L spectra vs Q²

- rescattering model (valid for $Q^2 \sim 10-100 \text{ GeV}^2$) \Rightarrow qualitative description
- ratio is also function of x_L

LN di-jet cross sections

Dijet neutron yield (PHP sample)

0.06

0.04

0.02

0

f_{LN} = fraction of di-jets w/ leading neutrons.

-ow-x 2003 – Napflio A.Garfagnini Duc inte dis NC

LN dijet yield is flat w/ E_t^{jet} but grows w/ x_{γ}^{jet} (due to process kinematics, remnant interactions, or parton distributions in LN vs inclusive ?)

No effect is seen in Q² distributions.

 \rightarrow agreement with factorisation hypothesis.

ZEUS di-jet with protons

Low-x 2003 – Napflio A.Garfagnini

r_{LP}^{jet} = leading proton yield w/ jet production.

→ longitudinal and transverse momentum distribution of proton not affected by jet activity (hard scale = E_T^{jet}).

Di-jet w/ protons (ZEUS)

 r_{jet}^{LP} = fraction of dijet evets w/ a leading proton.

 \rightarrow ratio independent of jet variables (E^{jet}_t, Q², x).

 $r_{jet}^{LP} \sim r^{LP(2)} \sim 0.12.$

→ fraction of dijet events w/ LP ≅ fraction of inclusive events w/ LP.

Neutron tagged D*

ZEUS 1998-2000. ∫Lumi = 80.17 pb⁻¹

e+ in LUMI (PHP): → 117.3 < W < 274.3 GeV

n in FNC:

→ 0.2 < xL < 1, $\theta_n < 0.8$ mrad.

D* decay mode:
$$D^{\star\pm} \rightarrow D_0 \pi_s^{\pm}$$

 $\rightarrow K \pi^{\pm}$
 $\sim p_t (D^{\star}) > 1.9 \text{ GeV}$

 $P_{t}(K) > 0.45 \text{ (from D}_{0})$

Neutron tagged D*

Both standard fragmentation (HERWIG) OPE is needed for x_{L} distribution and OPE (Rapgap) describe D* variables

Low-x 2003 – Napflio A.Garfagnini

D* yield

$$R^{D^{*}} = (\sigma^{D^{*}}_{LN} / \sigma^{D^{*}}_{inc})$$

= 8.1± 0.9 (stat.) ± 0.3 (sys.) %

1

Pion structure function, F_2^{π}

- WHERE: in the region where factorization is ~ valid: high Q² and high x_L and OPE describes the spectra.
- HOW: as the cross section, the structure function factorizes:

 $F_{2}^{LN}(x_{Bj}, Q^{2}; x_{L}, t) = f_{\pi/p}(x_{L}, t) \times F_{2}^{\pi}(x_{Bj}/(1 - x_{L}), Q^{2})$

- Use measured F_2^{LN} , $f_{\pi/p}$ from literature, then extract F_2^{π} .
- Use the x_{L} region where the background is smallest ($x_{L} = 0.73$).
- In the literature, at $x_L = 0.73$, flux value varies by a factor ~ 2.
- Use extremes of flux.
- Compare to parametrization of F₂^π extracted from pp data (low Q², high x_{Bj} fixed target data).

Pion structure function, F_2^{π}

25

Conclusions

Standard fragmentation models fail to describe baryon production. Particle exchange models describe rate and spectra $(x_1 \text{ and } p_1^2)$:

- π dominant for $n \rightarrow \text{extract } \mathsf{F}_2^{\pi}$;
- need multiple exchanges for p.

Vertex factorization:

- approx. valid at high Q^2 , is broken at low Q^2 ;
- form of violation varies w/ x_L (neutron case);
- violation consistend w/ re-scattering in particle exchange.

 $F_{2}^{\ \pi} \ and \ F_{2}^{\ LP(2)} \propto F_{2}^{\ }$

Data selected w/ additional hard scales, di-jet activity and D* production, show apparent agreement w/ factorisation (statistics lower than inclusive case).