

Study of Inclusive Jets Production in ep Interactions at HERA

Mónica Luisa Vázquez Acosta

Universidad Autónoma de Madrid

On behalf of the ZEUS & H1 Collaborations

- ✓ The HERA collider provides a unique laboratory for the study of the hadronic final state
- ✓ Jet data are very precise at high transverse energy where the experimental uncertainties and non-perturbative effects are small. This allows
 - Precision tests of perturbative QCD
 - □ Constrains on proton and photon parton distribution functions
 - □ Study the size of the theoretical uncertainties for further improvements
 - **Extraction** of **QCD** parameters where the uncertainties are small

- \checkmark Study of subprocesses proportional to α_s or higher powers
- ✓ Explore the low Q² transition region where non-perturbative effects become important

> Negative squared 4-momentum transfer

$$\mathbf{Q}^2 \equiv -\mathbf{q}^2 = (\mathbf{k} - \mathbf{k}')^2$$

Bjorken scaling variable
O²

$$\mathbf{x} \equiv \frac{\mathbf{Q}}{\mathbf{2p} \cdot \mathbf{q}}$$

 $\mathbf{y} \equiv \frac{\mathbf{p} \cdot \mathbf{q}}{\mathbf{p} \cdot \mathbf{k}}$

> Inelasticity

* <u>Deep Inelastic Scattering</u>: $Q^2 >> 1 \text{ GeV}^2$

Neutral Current: $e^+p \rightarrow e^+ X(\gamma, Z^0)$

Charged Current:
$$e^+p \rightarrow \overline{\nu}_e X(W^{\pm})$$

***** <u>Photoproduction</u>: $\mathbf{Q}^2 \sim \mathbf{0} \operatorname{GeV}^2$

Total hadronic centre-of-mass energy

$$\mathbf{W}^2 \equiv (\mathbf{q} + \mathbf{p})^2 = \mathbf{y}\mathbf{s} - \mathbf{Q}^2$$

- In photoproduction the photon has low virtuality, at HERA Q² ~ 10⁻³ GeV²
- \Rightarrow the high transverse energy jets provide a hard scale

> High E_T jet production is described up to $O(\alpha \alpha_S)$ in the SM by

Inclusive jet production does not restrict the phase space of the second jet

- ⇒ reduced theoretical uncertainties in the NLO QCD predictions
- \Rightarrow the information of the event kinematics is reduced

Theoretical calculation from Klasen, Kleinwort and Kramer - Eur. Phys. J. Direct C 2 (1998) 2

Running of α_s in a single measurement

 $\geq \alpha_{s}(M_{z})$ values determined from a QCD fit to $d\sigma/dE_{T}^{jet}$ in different E_T^{jet} regions

- Small experimental uncertainties
- Theoretical error dominates

Consistent with recent determination of Bethke

A χ^2 -fit to all the E^{jet} regions gives a value of $\alpha_s(M_z)$ of:

 $\alpha_{s}(M_{z}) = 0.1224 \pm 0.0001 (stat.)^{+0.0022}_{-0.0019} (exp.)^{+0.0054}_{-0.0042} (th.)$

Bethke: hep-ex/0211012

Inclusive Jets in ep Interactions at HERA, Mónica Vázquez Acosta (UAM)

 \geq

Inclusive Jet Cross Sections in PHP H1 Collaboration - hep-ex/0302034

H1 inclusive jet photoproduction

All predictions obtained using different proton (MRST99,CTEQ5) and photon (GRV,AFG) PDFs agree with the data

Theoretical calculation from Frixione, Ridolfi -Nucl. Phys. B 507 (1997) 315

Agreement with NLO QCD very good

Scaled cross section: independent of energy up to scaling violations

$$S(x_T) \equiv \frac{E_T^3}{2\pi} \frac{d^2\sigma}{dE_T d\eta} ; x_T \equiv \frac{2E_T}{W_{\gamma p}}$$

 $x_{T} < 0.2$

 \Rightarrow shape similar for γp and $p\bar{p}$

⇒ resolved photon ~ hadron

$x_{\tau} > 0.2$

 $\Rightarrow \gamma p$ harder than $p\bar{p}$ spectrum

- enhanced quark density in the resolved photon w.r.t. a hadron
- dominance of direct
- ⇒ point-like photon

⇒ Confirmation of the dual nature of the photon

Jets in Deep Inelastic Scattering

Jet production in DIS $e^+ p \rightarrow e^+ (\overline{\nu}_e) + jet(s) + X$ is described in the SM $O(\alpha_s)$ by

- > Supress Born contribution (the current quark has no E_T)
- Lowest order contributions QCD-Compton and boson-gluon fusion
- > Directly sensitive to QCD subprocesses at $O(\alpha_s)$

Inclusive jets in NC DIS: forward region H1 Collaboration - hep-ex/0206029

Forward region: 1.5 < η^{lab} < 2.8 H1 Inclusive Jets

NLO predictions up to 50% lower than data where NLO corrections are largest

Azimuthal asymmetry of jets in NC DIS ZEUS Collaboration - hep-ex/0210064

Distribution of the azimuthal angle in the Breit frame between the lepton scattering plane and the plane defined by the jet and the incoming proton direction

 \Box LO pQCD predicts for NC DIS at Q² << M_Z²

 $\frac{d\sigma}{d\phi_{jet}^{B}} = \mathbf{A} + \mathbf{B} \cdot \cos\left(\phi_{jet}^{B}\right) + \mathbf{C} \cdot \cos\left(2\phi_{jet}^{B}\right)$

> In γ^{*}q→qg the outgoing g(q) preferentially appears at φ=0(π)
 > In γ^{*}g→qq the φ dependence is dominated by the cos2φ term

□ For an inclusive jet measurement: $\frac{d\sigma}{d\phi_{jet}^B} = A + C \cdot \cos(2\phi_{jet}^B)$

- Small experimental and theoretical uncertainties
- * NLO QCD calculations describe the measurements very well

No jet cuts in the laboratory frame

• $Q^2 > 125 \text{ GeV}^2$, $-0.7 < \cos \gamma < 0.5$

• $E_{T,iet}^{B} > 8 \text{ GeV}, -2 < \eta_{iet}^{B} < 1.8$

Normalised cross section

Azimuthal asymmetry of jets in NC DIS ZEUS Collaboration - hep-ex/0210064

The asymmetry is predicted to decrease as Q^2 increases due to the progressive decline of the $\gamma^*g \rightarrow q\bar{q}$ process

NLO QCD describes the data well

LO QCD predicts a larger asymmetry at low Q²

Inclusive Jets in ep Interactions at HERA, Mónica Vázquez Acosta (UAM)

Precise test of pQCD prediction for the azimuthal asymmetry

Inclusive jets in Charged Current DIS ZEUS Collaboration - hep-ex/0306018

 $e^+ p \rightarrow \overline{\nu}_e + jet + X$

>Test flavour changing electroweak theory and QCD in one type of events

Both the NLO QCD and MC calculations describe well the data

Jet Substructure of inclusive jets in CC DIS ZEUS Collaboration - hep-ex/0306018

- ✓ HERA is now producing a wealth of precision jet data at high E_T in NC and CC deep inelastic scattering, photoproduction and the transition region.
- ✓ Many extractions of the QCD coupling constant α_s with a precision competitive with the world average. The running behaviour of α_s is clearly seen.
- ✓ At high E_T^{jet} in inclusive jet cross sections, theoretical uncertainties are small and the theoretical predictions are able to reproduce cross sections over many orders of magnitude.
- At lower Q² theoretical uncertainties are dominant
 theoretical developments are needed.
- Experimental precision and coverage of data is now very good
 time to include the HERA jet data in global PDF fits.