### **Deeply Virtual Compton Scattering**

### and

# Light Cone Wave Function of the Photon

Justyna Ukleja, Warsaw University

### for the ZEUS Collaboration





DVCS

# **Deeply Virtual Compton Scattering**

Deeply Virtual Compton Scattering (DVCS)

 $\rightarrow$  diffractive scattering of the virtual photon

• Interference between QCD with QED (BH) amplitudes  $\rightarrow$  rich structure in  $\phi$ , angle between the hadronic and leptonic planes  $\rightarrow$  asymmetries (angular,charge)

 $\rightarrow$  gives access to the Generalized Parton Distributions GPDs



# **QCD Models for DVCS**



QCD-based Model- Frankfurt, Freund and Strikman (FFS): $\frac{d^3 \sigma_{\rm DVCS}}{dx dQ^2 dt} = \frac{\pi^2 \alpha^3}{2x R^2 Q^6} [1 + (1 - y)^2] e^{bt} F_2^2(x, Q^2) (1 + \rho^2)$ NLO calculationFreund, McDermott

Colour Dipole Model - Donnachie and Dosch (DD), Forshaw,Kerley and Shaw (FKS), McDermott,Frankfurt,Guzey and  $\gamma$  Strikman (MFGS)

$$\mathcal{A} \sim \int_{R,z} \psi_{in}^{\gamma^*} \sigma_{D} \psi_{out}^{\gamma}$$

 $\sigma_D$  - dipole-p cross section

 $\psi_{in}^{\gamma^{\star}}$  - light-cone wave function of the incoming photon

 $\psi_{out}^{\gamma}$  - light-cone wave function of the outgoing photon

Justyna Ukleja,ZEUS

### **DVCS** - event selection

ZEUS:  $e^+p$  sample,  $95\,pb^{-1}$  ,  $e^-p$  sample  $17\,pb^{-1}$ 





HERA

 $\sqrt{s} = 300, 320 \,\text{GeV}$   $5 < Q^2 < 100 \,\text{GeV}^2$   $40 < W < 140 \,\text{GeV}$  $10^{-4} < x < 10^{-2}$ 

- 2 EM clusters
- 0 or 1 Track; if 1, must be matched to EM cluster
- No other activity above noise level to reject events where the proton dissociates

### **DVCS - event topology**



 $\gamma$  from QED bremsstrahlung emitted in *e*-beam direction  $e^+$  sample CONTROL SAMPLE only BH contributes, 7000 events



 $\gamma$  sample ENRICHED WITH DVCS both BH and DVCS contribute, 4000 events

BH MC describes data in control sample

 $\rightarrow$  use MC to subtract BH in enriched DVCS sample

### **DVCS - control plots**



### **DVCS - W dependence**



### **DVCS - W dependence**



# $Q^2$ dependence



• 
$$\sigma(\gamma^* p \to \gamma p) \sim Q^{-3}$$

Freund, McDermott and Strikman

NLO calculation

 $b(Q^2) = 8[1 - 0.15ln(Q^2/2)] \text{GeV}^{-2}$ 

The best description is given by NLO calculation

### **Comparison with Colour Dipole Models**



DD (Donnachie and Dosh) - perturbative + Regge

FKS (Forshaw, Kerley and Shaw ) - Regge approach

Very different models give similar predictions in the measured kinematical region

MFGS(McDermott, Frankfurt, Guzey and Strikman)- QCD colour transparency

### Summary for DVCS

- →  $\sigma(\gamma^* p \rightarrow \gamma p)$  measured in the range  $4 < Q^2 < 100 \,{\rm GeV}^2$  and  $40 < W < 140 \,{\rm GeV}$
- $\blacktriangleright$  No significant difference between  $e^+p$  and  $e^-p$
- $\blacktriangleright \ \sigma(\gamma^*p \to \gamma p)$  rises steeply with  $W \to {\rm hard\ process}$

$$\implies \sigma(\gamma^* p \to \gamma p) \sim Q^{-3}$$

$$\implies \frac{d\sigma}{dt} = \frac{d\sigma}{dt}|_{t=0}e^{-b(Q^2)|t|}$$

 $Q^2$  dependence of b-slope may be crucial in extracting GPDs, however

t dependence still not measured

### **Photon light-cone wave function - introduction**

Light-Cone Wave Functions (LCWF)

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

- $\rightarrow\,$  are the probability amplitudes to find a component with a given momentum in the momentum space
- $\rightarrow$  are the solutions of LC Hamiltonian:  $H_{LC}^{QCD} |\psi_{\gamma}\rangle = M_h^2 |\psi_{\gamma}\rangle (H_{LC}^{QCD} = P^+P^- P_{\perp}^2)$
- $\rightarrow$  are usually tested through measurements of form factors
- $\rightarrow$  are the best descriptions of the composite system

# **Photon light-cone wave function - QED and QCD**

The LCWF for the lowest Fock states: 
$$\psi_{\lambda_1\lambda_2}^{\gamma} = -ee_l \frac{\overline{l_{\lambda_1}(k)\lambda \cdot \epsilon^{\gamma} l_{\lambda_2}(q-k)}}{\sqrt{u(1-u)(Q^2 + \frac{k_{\perp}^2 + m^2}{u(1-u)})}} \gamma^{(q)} \sqrt{\frac{k_{\perp}}{l(q-k)}} z^{\gamma(q)}$$
  
• longitudinal light-cone momentum fraction:  $u = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{p^0 + p^z}$   $\sum_{i=1}^n u_i = 1$   
• transverse momenta:  $\vec{k}_{\perp i}$   $\sum_{i=1}^n \vec{k}_{\perp i} = \vec{0}_{\perp}$   
The hadronic  $|q\bar{q}\rangle$  LCWF is expected by pQCD to be the same as for electromagnetic  $|l^+l^-\rangle$   
for  $k_{\perp}^2 >> \Lambda_{QCD}^2$ :

S.J.Brodsky, L.Frankfurt, J.F.Gunion, A.H.Mueller and M.Strikman, Phys.Rev.**D50**,3134(1994)



u

- for the transversely polarised photons:  $\Phi_{f\bar{f}/\gamma_T^*}^2 \sim \sum_{\mu=1}^2 \frac{1}{4} Tr \psi^2 = \frac{m^2 + k_{\perp}^2 [u^2 + (1-u)^2]}{[k_{\perp}^2 + a^2]^2}$   $a^2 = m^2 + Q^2 u(1-u)$
- for the longitudinally polarised photons:  $O^{2}[u^{2}(1-u)^{2}]$

$$\Phi_{f\bar{f}/\gamma_L^*}^2 \sim \frac{Q^2 [u^2 (1-u)^2]}{[k_\perp^2 + a^2]^2}$$

l(k)

### **LCWF - measurement of QED component**



 $\gamma\gamma \to \mu^+\mu^-$ 

- Proton and electron undetected
- $\blacktriangleright$  Only 2  $\mu$  in detector
- ➢ Diffractive (small t)
- $\rightarrow 4 < M_{\mu\mu} < 15 \,\mathrm{GeV}$

\* 
$$u = \frac{E_1 + p_{z'_1}}{E_1 + E_2 + p_{z'_1} + p_{z'_2}} \quad 0 < u < 1$$

\* 
$$\vec{k_{T_1}} + \vec{k_{T_2}} = \vec{0}$$

\*  $W^2 = (q + P)^2 \approx 2E_p \sum_i (E_i - p_{zi})$ 

\* 
$$t = (P - P')^2 \approx -p_{T\mu\mu}^2$$

\* 
$$M^2_{\mu\mu} = (p_1 + p_2)^2$$



### Kinematical variable distributions for the LCWF

ZEUS



### **LCWF - measurement of QED component**

#### (qd) np/⊳p ● ZEUS (prel.) 99-00 LCWF (BFGMS) 100 GRAPE $\gamma\gamma \rightarrow \mu\mu$ $4 < M_{uu} < 15 \text{ GeV}$ 80 k<sub>t</sub>>1.2 GeV $-t < 0.5 \text{ GeV}^2$ 60 30 < W <170 GeV **40** 20 LCWF normalized to data 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 u

ZEUS

| Calculations: |         | Brodsky, | Frankfurt, | Gu- |
|---------------|---------|----------|------------|-----|
| nion,         | Müller, | Strikman | (BFGMS)    |     |

- Electromagnetic LCWF of the photon is measured
- BFGMS is in agreement with QED and data
- Results demonstrate the first proof that diffractive dissociation of particles can be reliably used to measure their LCWF

### **Summary for Light Cone Wave Function**

- Photon electromagnetic LCWF is measured and is in agreement with QED
- This demonstrate the first proof that diffractive dissociation of particles can be reliably used to measure their LCWF
- Measured EM LCWF gives support for the method used in previous measurements of the pion LCWF and possible future applications