Inclusive Diffraction at H1

Paul Thompson Birmingham University

Diffraction at HERA
 Measurement technique
 Latest measurements
 Effective α_{IP}(0)
 Q² and β dependences
 QCD analysis
 Summary

EPS Aachen 2003

Inclusive Diffraction at H1

1

Diffractive DIS at HERA

Study QCD Structure of high energy diffraction using $\,\gamma^{\!\!\!\star}\,\,p\,\,\to X\,\,p\,$

Standard DIS

Diffractive DIS

Probe proton \rightarrow F₂ Proton

Probe the Pomeron $\rightarrow F_2^{D}$

EPS Aachen 2003

Diffractive Kinematics

EPS Aachen 2003

Overview of $\sigma_r^{D(3)}$ measurements at H1

New data at Low Q², $\ell = 3.4 \text{ pb}^{-1}$

New H1 Measurements at Low and High Q²

Good agreement between measurements.

Data well described by QCD Fit (more later)

New data at High Q²,
$$\ell = 65~{
m pb}^{-1}$$

Factorisation of $\sigma_r^{D(3)}$

QCD Hard Scattering Factorisation for Diffractive DIS (Collins)

-At fixed x_{IP} ,t, Diffractive Parton Densities $p(x,Q^2)$ evolve with x and Q^2 via DGLAP equations

Regge Factorisation

-shape of diffractive PDFs independent of x_{IP} and t

Test of Regge Factorisation

Effective $\alpha_{IP}(0)$

Possible increase with Q²? Limited by ignorance of F_L Data inconclusive

Effective $\alpha_{IP}(0)$ at large Q² greater than for soft IP

 $\alpha_{\text{IP}}(0)$ lower than for inclusive cross section $x_{\text{IP}}F_2^D \approx A(\beta, Q^2)x^{-2(\alpha(t)-1)}$ $F_2 \approx Bx^{-(\alpha(t)-1)}$

EPS Aachen 2003

β Dependence of σ_r^{D}

Q^2 Dependence of σ_r^D

Divide by $f_{IP}(x_{IP})$

Compare different x_{IP} bins

Large +'ve scaling violations except at highest $\boldsymbol{\beta}$

-> Gluon dominated

Scaling violations similar at all values of X_{IP} -> supports Regge factorisation

Scaling Violations

H1 Preliminary

Quantify Scaling violations... Divide by $f_{IP}(x_{IP})$ $\sigma_r^D = A + B \ln Q^2$ $B = \frac{d\sigma_r^D}{d \ln Q^2 (\sigma_r^D)}$

Large +'ve Scaling violations until $\beta \sim 0.6$

EPS Aachen 2003

Comparison with inclusive DIS

EPS Aachen 2003

New Measurement at High Q²

EPS Aachen 2003

Q^2 Dependence at high x_{IP}

Extrapolation of the fit over an order of magnitude in Q² !!!

->Good description of the data

EPS Aachen 2003

β Dependence at high \textbf{x}_{IP}

Meson exchange has negative slope

New data at high Q² will provide constraint to future fits

Summary

New measurements from H1 at low and high Q²
 Data will provide further constraints for fits and models

 α_{IP}(0) in diffractive DIS larger than soft Pomeron
 NLO QCD fit yields PDFs dominated by gluon to large β
 Similar Q² dynamics to inclusive DIS at medium β

High Precision measurement of $F_2^{D(3)}$ combined with QCD factorisation theorem:

tools for pQCD to provide complete description of diffractive final state as for inclusive DIS?