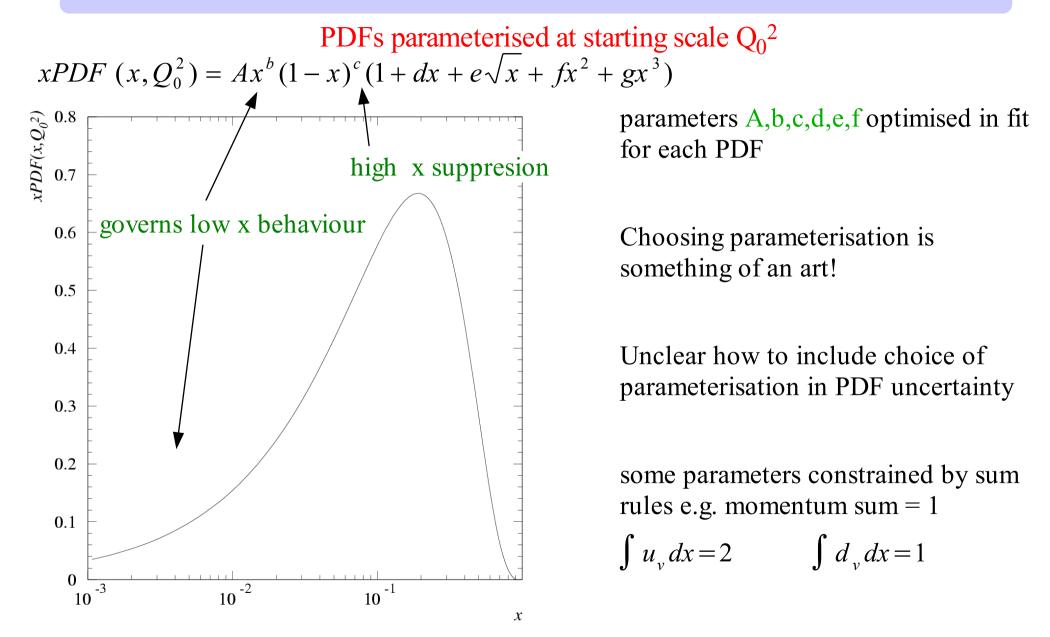
QCD Analyses of NC and CC Cross Sections Determination of PDFs and α_s

International Europhysics Conference on High Energy Physics Aachen July 17th - 23th 2003

Birmingham University (UK)

HERA–I Datasets

HERA datasets:


NC & CC e+ data $\sqrt{s}=300$ (94-97) 35 pb⁻¹ NC & CC e- data $\sqrt{s}=320$ (98-99) 16 pb⁻¹ NC & CC e+ data $\sqrt{s}=320$ (99-00) 65 pb⁻¹ NC data at low Q² < 100 (96-97)

NC & CC data with different lepton charges provides quark flavour sensitivity

What Do We Learn From QCD Analyses?

- accurate determinations of PDFs allow accurate SM predictions
- PDFs used to calc very different processes for LHC / Tevatron
- precise α_s determination independent of hadronic final state ideal case
- understanding the transition region from pQCD to total photon-proton cross section tells us about QCD confinement
- QCD evolution evolves PDFs in Q²
- QCD does not predict x dependence of PDFs
- x dependence must be extracted from data

PDF Parameterisations

Assumptions of the QCD Analyses

QCD analyses require many choices to be made Should be reflected in PDF uncertainty:

- Q₀² starting scale
- Choice of data sets used
- Cuts to limit analysis to perturbative phase space (Q_{min}^2)
- Choice of densities to parameterise (e.g. u_v, d_v, xg, xS)
- Treatment of heavy quarks
- Allowed functional form of PDF parameterisation
- Treatment of experimental systematic uncertainties
- Renormalisation / factorisation scales
- Choice of α_s
- etc...

ZEUS Global Analysis

- ZEUS perform a new global analysis use world structure function data
 - ZEUS 96/97 NC e⁺ reduced cross sections \rightarrow gluon / quarks at low x / Q²
 - F₂ NMC p &D and ratio F₂ D/p
 - F₂ E665 p & D
 - F₂ BCDMS p only
 - $xF_3 CCFR (0.1 < x < 0.65)$

- \rightarrow quarks at medium x
- \rightarrow quarks at medium x
- \rightarrow u quarks at high x / low Q²
- \rightarrow valence quarks at high x / low Q²
- Standard xg, xu_v, xd_v, Sea, x($\overline{d} \overline{u}$) decomposition of proton
- $Q_0^2 = 7 \text{ GeV}^2 / Q_{\min}^2 = 2.5 \text{ GeV}^2$
- Additional constraints on valence quark parameters ($b_{uv} = b_{dv} = 0.5$)
- Use functional form = A . $x^{\mathbf{b}} \cdot (1-x)^{\mathbf{c}} \cdot (1 + dx + e\sqrt{x})$
- Experimental systematic uncertainties are propagated onto final PDF uncertainty
- Use Thorne/Roberts variable flavour number scheme.
- $x(\overline{d} \overline{u})$ params taken from MRST only normalisation free in fit

H1 Only QCD Analysis

Use only H1 inclusive NC & CC x-sections (e⁺p and e⁻p) H1 perform a dedicated fit: tune fitted PDFs to NC/CC cross section sensitivity:

$$\begin{aligned} xU &= xu + xc \\ xD &= xd + xs \\ x\bar{U} &= x\bar{u} + x\bar{c} \\ x\bar{D} &= x\bar{d} + x\bar{s} \\ xg \end{aligned} \qquad \begin{aligned} & & & & & \\ F_2 &= \frac{4}{9}(xU + x\bar{U}) + \frac{1}{9}(xD + x\bar{D}) \\ & & & & \\ & & &$$

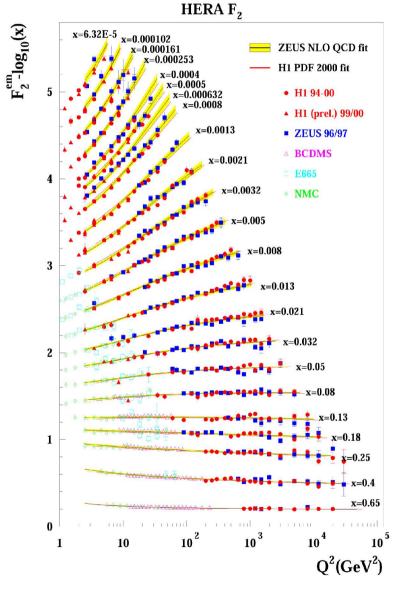
T T **T** T

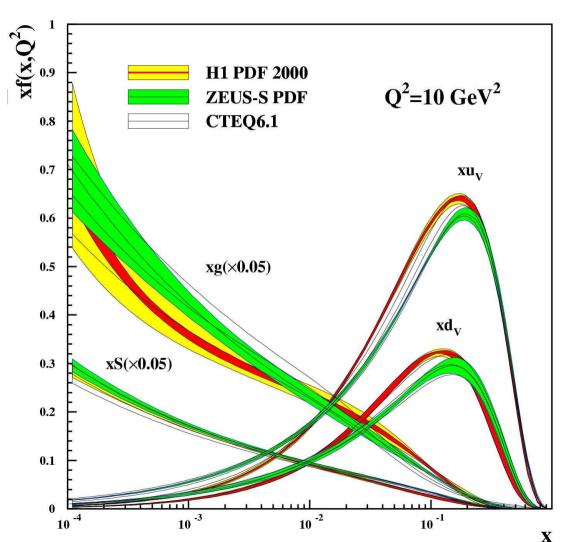
Perform fit in massless scheme - appropriate for high Q^2

Careful choice of parameterisations search for χ^2 saturation

$$Q_0^2 = 4 \text{ GeV}^2 / Q_{\min}^2 = 3.5 \text{ GeV}^2$$

Use BCDMS p and D data as cross check only

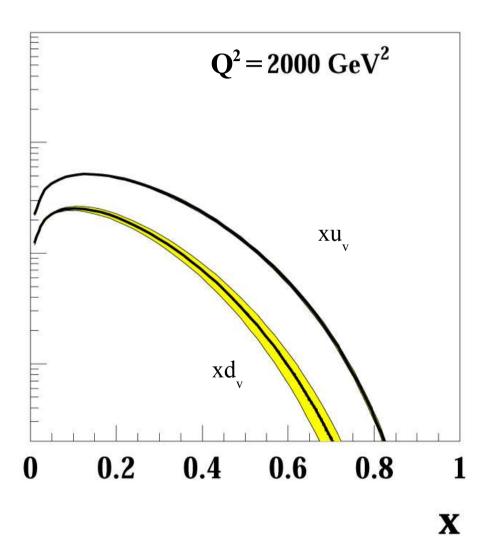

Description of NC Data


scaling violations of F_2 well described

H1: χ^2 / ndf = 0.88 (621 data points, 10 pars.)

ZEUS: χ^2 / ndf = 0.95 (1263 data points, 11 pars.)

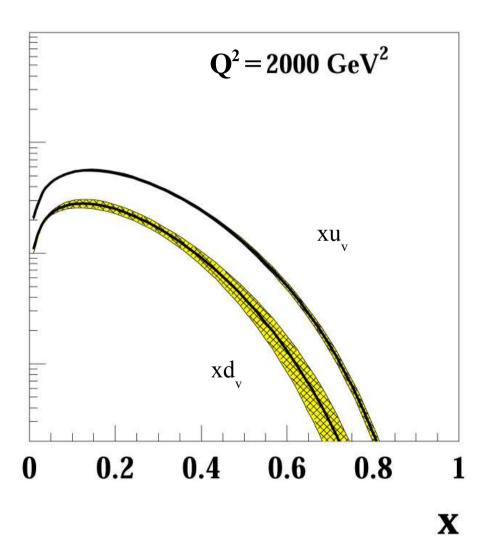
HERA PDFs


ZEUS/ H1 analyses in agreement for xS and xg at low x – HERA data

Differences in high x valence – different data used in fits

or missing component in PDF uncertainty?

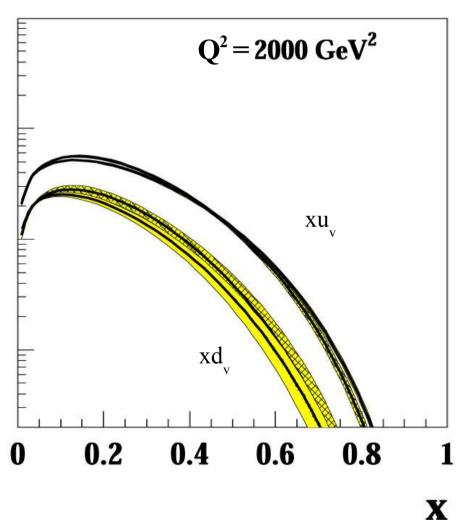
CTEQ 6.1 lies between ZEUS & H1 fits


ZEUS Global PDFs

Fit to ZEUS data + global DIS data

Valence distributions well constrained

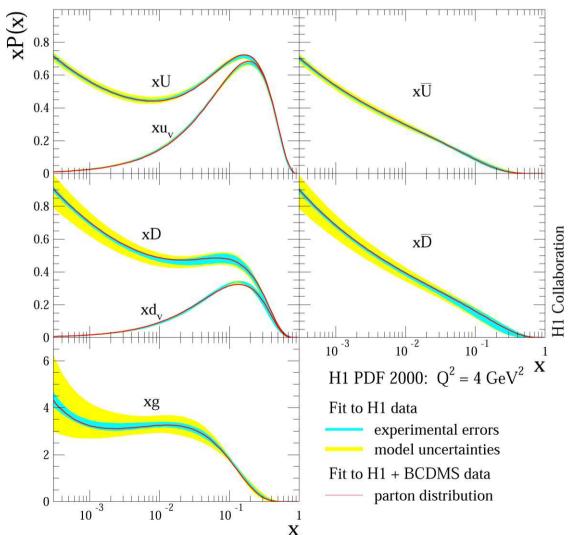
ZEUS only PDFs



Fit to ZEUS data only

High Q² HERA data provide direct valence constraint

low x parameters fixed in PDF fit


ZEUS Global PDFs

• xd_v found to be larger but in agreement

- Deuteron data subject to nuclear corrections...
- HERA data measure valence at much higher Q²
- With HERA-I data uncertainties on valence are ~ factor 2 larger than global anaysis

H1 PDFs

Fit provides tight constraint on xU and xD at high x

 $xD \sim 10\%$

 $xU\sim 3\%~$ at x=0.4

Including precise BCDMS data yields same PDFs – smaller uncertainties

H1 Gluon and α

Different approach: Minimise theory uncertainty - minimise data sets

- Perform dedicated QCD analysis for simultaneous α_s and xg fit at low x / Q².
- Use precise H1 and BCDMS-p F_2 data to constrain valence region.
- Check consistency of data sets.
- Tune fitted PDFs to measured cross sections.

no nuclear correction required

• *xg* • $xV = \frac{9}{4}u_v + \frac{3}{2}d_v$ • $xA = \bar{u} + \frac{1}{4}(u_v - 2d_v)$ $F_2 = \frac{1}{3}xV + \frac{11}{9}xA$ used for systematic checks

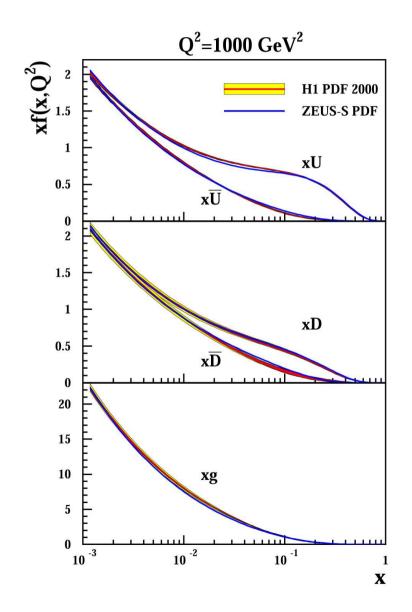
- Use parametric form of: A x^b $(1-x)^{c}$ $(1 + dx + e\sqrt{x + fx^{2}})$

- Use 3-flavour number scheme optimal choice in region of precision H1 data
- Experimental systematics are fitted \rightarrow PDF error bands

HERA Determinations of α_{s} From Inclusive Data

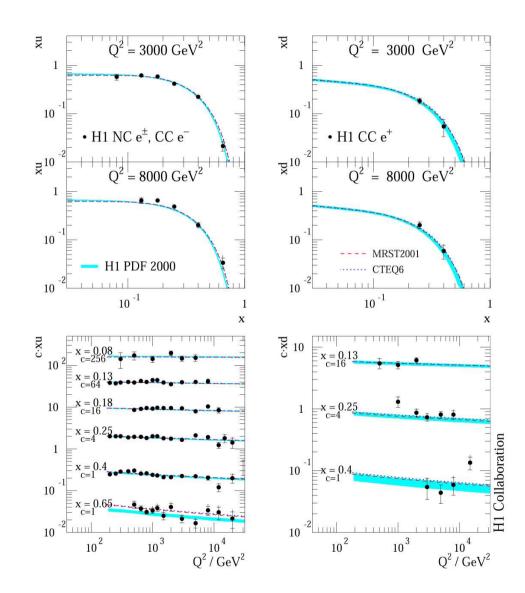
H10.1150 + -0.0017(exp) + 0.0009 - 0.0007(model)if: systematic errors are not fitted: +0.0005 EPJ C21(01)33 NMC replaces BCDMS 0.116+-0.003 (exp) 4 light flavours: +0.0003 BCDMS deuteron data added: 0.1158 +- 0.0016 (exp) ZEUS 0.1166 + -0.0008(unc) + -0.0032(corr) + -0.0036(norm) + -0.0018(model)systematic errors are not allowed to vary in chi2 minimisation $Q^2 > 2.5 \text{ GeV}^2$, $W^2 > 20 \text{GeV}^2$, RT-VFNS, $b_{\mu\nu} = b_{d\nu} = 0.5$ fit α , xg, uv, dv, sea, $\overline{d} - \overline{u}$ (MRST) Phys.Rev. D67(03) if fixed flavour scheme is used: +0.0010

HERA Determinations of α_s From Inclusive Data


Large χ^2 variations if renormalisation scale is varied: ±20 units ! $\rightarrow (\frac{1}{4} ... 4) : \pm 0.005$ (H1) $\rightarrow (\frac{1}{2} ... 2) : \pm 0.004$ (ZEUS)

• Variations of factors 2 or 4 are ad hoc

• Largest single uncertainty in determination of α


• Expected to be reduced in a NNLO analysis

QCD Analyses of HERA Structure Function Data

- HERA data now able to constrain PDFs alone
- At high Q² (LHC region) QCD evolution washes out differences
- PDF extractions should consider parameterisation uncertainty
- α_s extracted from DIS data competetive with world average
- NNLO analysis could yield most precise determination of α_s

H1 PDFs

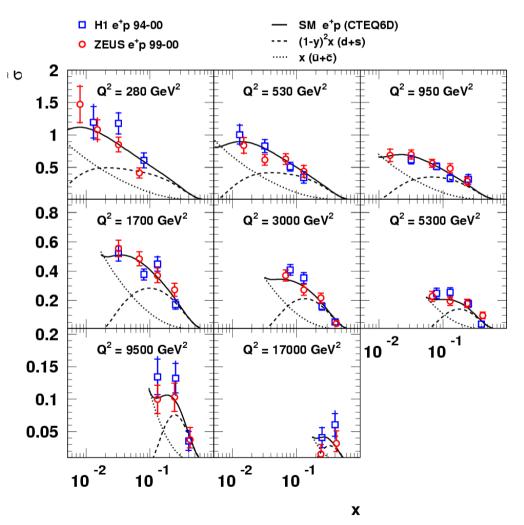
Can compare fit result with local extraction method:

Use cross section measurements at high x dominated (>70%) by xu or xd

Apply correction to measurements based on QCD expectation

Assumptions in expectation largely cancel

Insensitive to QCD evolution effects


Complementary to QCD fit

Description of CC Data

Good description of CC data

CC cross sections sensitive to d_{v} at high

HERA I high Q² e⁺p Charged Current

