EPS Aachen 17.7.03 -23.7.03

Study of low-x Dynamics using the Hadronic Final State in DIS

Roman Pöschl DESY Hamburg for

Parton Dynamics

Monte Carlo Models and QCD Calculations

partonic final state only

Monte Carlo Models and QCD Calculations

final state

ME+PS (e.g. RAPGAP) complete hadronic final state

Resolved γ^{*} might mimic break in $k_{_{\rm f}}$ -order

sulations	
) Calc	
Is and	
Mode	
Carlo	
onte (
Σ	

'BFKL'-Type

DISENT, RAPGAP

Colour Dipole Model

Emission from independent

dipoles produces

ē

georg

90000

Deldo

ወ

DCI-AP

no k-ordering

(e.g. ARIADNE)

Parton shower

from

Dipole emission

Forward n⁰ Cross Sections

Results for $\Delta \phi^*$ <120°

- Data rises towards low x Increasing parton virtuality due to longer parton ladder ?
- NLO-Dijet is significantly away from data
 Only LO for observable ?
- NLO-3Jet calculations
 closer to data
 Still problems towards lowl-x

Summary and Conclusions

Talk summarized abstracts: A081, A086, A109, A507

- Overview on studies to understand parton dynamics at low-x in DIS presented
- Forward Jet and π^0 production best described by models not imposing DGLAP assumptions (still open questions)
- NLO-QCD calculations have problems to describe single inclusive jet cross sections when jets were measured in the laboratory frame.
- Azimuthal Jet Correlations a powerful tool to study parton dynamics at low-x

Good agreement with models which incorporate unintegrated gluon pdfs and/or non k, -ordered parton cascades