### (Vector) Meson Production at H1

# **Benno** List

ETHIPPETH ZürichInstitute for Particle PhysicsInstitute for Particle Physics

### for the H1 Collaboration



Special thanks to: Duncan Brown Philipp Fleischmann Xavier Janssen

Benno List

### **Contents of this Talk**

### Exclusive Vector Meson Production

- $\circ$  J/ $\psi$  and  $\psi$ ' photoproduction
  - Elastic photoproduction
  - Photoproduction at high |t|
- $\circ \rho^0$  electroproduction
  - Ohelicities as function of t
  - $\bigcirc Q^2$  dependence of *t* and *W* slope

### **Something completely different:**

• Inclusive production of  $\eta, \rho^0, f_0, f_2$ 

Note: Data marked ,,H1 preliminary" is subject to change. Please do not quote it without permission from H1.

Benno List

### **Vector Meson Photoproduction**

• Vector mesons ( $\rho$ ,  $\omega$ ,  $\phi$ , J/ $\psi$ ,  $\psi$ ', ...)

O have same quantum numbers  $J^{PC}=1^{--}$  as photon

- $\bigcirc$  can be produced by colorless exchange ("Pomeron") with proton
- Are a challenge tp perturbative QCD: Understand cross section dependency on VM type, center-of-mass energy, momentum transfer, photon virtuality, helicity
- Closely linked to 2–gluon exchange: (Skewed) gluon density



## **Kinematics**

• Photon virtuality  $Q^2$ :

- $O \log Q^2 < 1 \text{GeV}^2$ : photoproduction, electron undetected
- $\bigcirc Q^2 > 1$ GeV<sup>2</sup>: electroproduction, electron in main detector

O expect propagator term  $1/(Q^2+m^2)^2$  in cross section

- W: Photon–proton center–of–mass energy; at HERA: 20–200GeV
- *t*: Momentum transfer squared to proton,  $t \approx -p_t^2$  of proton
- $\odot M_{\rm VM}$ : Vector meson mass
- All these variables can provide a hard scale for pQCD!





#### Benno List

# W Dependence of $\sigma_{\gamma p}$

- Pomeron:  $\sigma_{\gamma p} \propto W^{\delta},$  $\delta = 4\alpha(\langle t \rangle) - 4$
- $\circ$  QCD:  $\sigma_{\gamma p} \propto G^2(x)$
- Rise gets steeper for:
  - Ohigher VM mass
  - $\bigcirc$  higher  $Q^2$
  - high |t|?
- Can we describe that rise of the *W* slope in QCD?



#### Benno List

Vector Meson Productio

### Integrated J/ $\psi$ Cross Section



○ Data from 1999/2000, *L*=54.8pb<sup>-1</sup>

• More precise measurement of  $\sigma(W_{\gamma p})$ 

○ *W* dependence:  $W^{0.70\pm0.08}$ 

### Integrated J/ $\psi$ Cross Section



○ Data from 1999/2000, *L*=54.8pb<sup>-1</sup>

More precise measurement of  $\sigma(W_{\gamma p})$ 

W dependence:  $W^{0.70\pm0.08}$ 

• Agreement with ZEUS and fixed target data

• Broad agreement with QCD calculations, but problems

### The Pomeron Trajectory



- Regge theory predicts:  $d\sigma/dt (W_{\gamma p}) \propto W^{4[\alpha(t)-1]}$
- Measuring W dependence in bins of t is a direct measurement of the Pomeron's trajectory
- Good agreement with ZEUS data
- α'=0.15±0.06GeV<sup>2</sup>: Shrinkage observed with 2.5σ!

### W Dependence of $\psi^{\prime}$ Production



- Ratio  $R = \sigma(\psi') / \sigma(J/\psi)$  measured
- *R* rises with *W*:  $R \propto W^{0.24 \pm 0.17}$
- Described well by color-dipole gBFKL-based calculation from Nemchik *et al*.
- Calculation in light–cone
  dipole formalism from Hüfner
  *et al.* is a bit low

Theory: Nemchik *et al.*, JETP **86**(1998)1054. Hüfner *et al.*, Phys. Rev. **D62**(2000)094022.

### **W**Rise in $\rho^0$ Electroproduction

- Preliminary result, 2000 data,  $\mathcal{L}=42.4\text{pb}^{-1}$
- $\bigcirc$  W Rise gets steeper with  $Q^2$



### Is Q<sup>2</sup>+m<sup>2</sup> a Universal Scale?



## **HERA–II: The Tale Continues**

- Spring 2003: Special data taken with dedicated ρ<sup>0</sup> photoproduction triggers
- More than 13000 events taken
- Wrange 25–85GeV
- $\circ$  |*t*| range up to 2GeV<sup>2</sup>
- $\circ$  Enough data for double– differential measurement of  $\rho^0$ photoproduction cross section



### Momentum Transfer t

- Exponential falloff  $d\sigma/dt \propto \exp(-b|t|)$
- In optical model (scattering on a black disk):  $b=R^2/4$
- $\bigcirc$  For proton dissociation: *b* smaller than for elastic production
- $\Rightarrow$  Proton dissociation dominates at high |t|
- Slope get steeper with *W*: shrinkage
- High |t|: *t* becomes a hard scale for QCD calculations



# New Measurement of $\gamma p \rightarrow J/\psi X$ at High |*t*|

- Full statistics from 1996–2000:  $\mathcal{L}=78\text{pb}^{-1}$
- $\circ 2 < |t| < 30 \text{GeV}^2$ : Probes  $|t| > M^2_{J/\psi}!$

• No exponential behavior as at low |t|

- $\bigcirc$  DGLAP\* fares well up to  $M^2_{J/\psi}$
- BFKL\* very good, but only with fixed  $\alpha_s$ .
- Power law:
  *n*=3.00±0.08(*stat*)±0.05(*syst*)



\*DGLAP: Gotsman *et al.*, Phys.Lett.**B532**(2002)37. BFKL: Enberg *et al.*, Eur.Phys.J. **C26**(2002)219.

### t Dependence of W Rise



• DGLAP too flat above  $|t| > 5 \text{GeV}^2$ , but good below

**>** BFKL reasonable

#### Benno List

### **Decay Angle Distributions**



○ Low  $Q^2$ : Photon behaves like real photon, VMs are transversely polarized:  $\sigma^L/\sigma^T(Q^2) \propto Q^2/m_V^2$ 

• At higher  $Q^2$ : Longitudinal photons dominate

### ρ<sup>0</sup> Electroproduction



 $r^{04}_{00}$  measures fraction of longitudinally polarized vector mesons:

 $\bigcirc$  Rises with  $Q^2$ , as expected

• no *t* dependence observed



**Benno List** 

Vector Meson Production at H1

Page 18

### s-Channel Helicity Non-Conservation



H1 Collab., Phys. Lett. **B539** (2002) 25.

Theory: Kuraev et al., JETP Lett. 68(1998)696.

#### Benno List

# J/ψ at high |t|: Helicity Measurement

• Fit 2-dimensional cross section:  $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^* d \phi^*} = \frac{3}{4\pi} \left( \frac{1}{2} (1 + r_{00}^{04}) - \frac{1}{2} (3r_{00}^{04} - 1) \cos^2 \theta^* + \sqrt{2} \operatorname{Re} \{ r_{10}^{04} \} \sin 2\theta^* \cos \phi^* + r_{1-1}^{04} \sin^2 \theta^* \cos 2\phi^* \right)$ 

• s-channel helicity conservation: all *r* are 0 in photoproduction $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^* d \phi^*} = \frac{3}{4\pi} \left( \frac{1}{2} + \frac{1}{2} \cos^2 \theta^* \right)$ 

• Result: all values consistent with 0, no violation of SCHC seen



Benno List







## **Inclusive Meson Production**

Inclusive particle production in fragmentation

- Universal plateau
- Here: Photoproduction, 2000 data,  $\mathcal{L}=38.7 \text{pb}^{-1}$
- Electron tagged, 174<W<256GeV
- $\bigcirc$  3.7.10<sup>6</sup> events
- Resonance production:  $\eta$ ,  $\rho^0$ ,  $f_0$ ,  $f_2$
- $\bigcirc p_t$  behaviour similar to stable particles?



### The Data



### **Universal Scaling?**

- After correction for spin factor:
- Resonances production lies on universal curve when plotted against  $p_t+m!$



# Summary

- Many new results on  $\rho^0$ , J/ $\psi$ ,  $\psi$ ' production, measurements become double-differential and explore new kinematic regions:
- Perturbative QCD calculations successfully describe many aspects (*W*, *t* slopes, helicity): big progress over last years
- Data continues to challenge theory
- Inclusive production of  $\eta$ ,  $\rho^0$ ,  $f_0$ ,  $f_2$  has been measured and shows a universal behavior in  $p_t+m$
- (Vector) meson prodcution will stay a fruitful subject at HERA-II



Benno List

### New Measurement of $\psi$ ' Photoproduction

- Full 1996–2000 statistics,
  *L*=77pb<sup>-1</sup>
- Direct decays  $\psi' \rightarrow \mu^+ \mu^-, e^+ e^-$ +cascade decays  $\psi' \rightarrow J/\psi \pi^+ \pi^-$
- $\circ$  40<W<150GeV, |t|<5GeV<sup>2</sup>
- $\circ$  First differential measurements of  $\psi$ ' photoproduction





Benno List

Vector Meson Production at H1

Page 29

# **New J/**ψ **Measurement (preliminary)**



### s-Channel Helicity Non-Conservation



$$\begin{split} W(\cos\theta^*) \propto 1 - r_{00}^{04} + (3 \ r_{00}^{04} - 1) \ \cos^2\theta^* \\ W(\Phi) \propto 1 + \sqrt{2\epsilon(1+\epsilon)}(r_{00}^5 + 2r_{11}^5) \cos\Phi \\ -\epsilon(r_{00}^1 + 2r_{11}^1) \cos 2\Phi \end{split}$$

- $\circ r^{04}_{00}$ : helicity conserving
- $\circ r_{00}^{5}+2r_{11}^{5}$ : helicity nonconserving

• Clear SCHNC observed

H1 Collab., Phys. Lett. **B539** (2002) 25.

### s-Channel Helicity Non-Conservation

- $r_{00}^{5}+2r_{11}^{5}$ : Combination of matrix elements that should vanish for SCHC
- Significant non-conservation observed
- Rises with  $\sqrt{|t|} \approx p_t$ , as expected
- Correctly predicted by QCD calculations



Theory: Kuraev et al., JETP Lett. 68(1998)696.

### Searching the **Odderon**

- If 2 gluons are a Pomeron, 3 gluons are an Odderon!
- "Naive" calculation of 3–gluon exchange shows flat energy dependence, i.e.  $\alpha_{\bigcirc}$ =1.
- Look for final states that are not possible for natural parity exchange, e.g.  $\pi^0$  with J<sup>PC</sup>=0<sup>-+</sup>.



## How to Find a Single $\pi^0$

• Problem: Only  $\pi^0$  in detector, i.e.  $2\gamma$ .

- Scattered electron in e–Tagger, neutron from proton dissociation in neutron calorimeter
- Gammas from  $\pi^0$  decay have energy ~6GeV, very close to beampipe. Use special calorimeter (VLQ) to detect them.
- 1999/2000 data, *L*=30.6pb<sup>-1</sup>

Inclusive  $M_{gg}$  spectrum for events with 2 photons in backward calorimeters:



Benno List

### Do We See It?



Not yet!

- No signal above background observed
- Derive limit:  $\sigma$  ( $\gamma$ p $\rightarrow$ N<sup>\*</sup>) < 49nb (95% CL) for 0.02<|t|<0.3GeV<sup>2</sup> at W=215GeV
- Theoretical expectation\*: >200nb

\*Berger et al., Eur.Phys.J. C9(1999)491.