Upen Charm Contribution to $F_{2}^{D(3)}$ in DIS and Leading Baryon Production at HERA

Thorsten Koop University of Toronto On behalf of the ZEUS Collaboration EPS03, Aachen, July 17, 2003

- Diffractive open charm contribution to F2D(3) in DIS
- Leading baryons and forward detectors at ZEUS
- D* photoproduction with a leading neutron
- Search for pion trajectory in photoproduction of leading neutrons
- Leading protons in DIS

Contribution to $F_2^{D(3)}$ in DIS Diffractive Open–Charm

Charm sensitive to gluon density and to Charm in the Pomeron

Total Cross Section in Open Charm

 Precision of data much improved over previous results
 Larger kinematic region in x_p x_p < 0.0016 => x_p < 0.0035

 $= 6.4 \pm 0.5 (stat.)^{+0.3}_{-0.7} (syst.)^{+0.3}_{-0.3} (p \, diss.)$

Differential Cross Section

ZEUS

- Compare Shape and Normalization of Data:
- Good Agreement with Gluon dominated fit in NLO QCD
 SATRAP
 - SALKAF
 (2 gluon exchange model) can describe data

Leading Baryons

- Significant part of ep scattering events at HERA contain a baryon in the final state
- Production mechanism is not yet completely understood
 - Exchange models are used to describe data

Exchange models (e.g. π^+ exchange)

 $\Rightarrow \text{Factorization: } \sigma(ep \to e'n X) = f_{\pi/p}(x_{\mathrm{L}}, p_{\mathrm{T}}) \sigma(e\pi \to e' X)$

Vertex Factorization: Upper vertex (event kinematics) independent of lower vertex (baryon kinematics)

D* Meson in Photoproduction with a Leading Neutron

- Study relationship between soft and hard interactions
- hard scale for D* production $(m_{a}^{2}) \ll soft$ scale for neutron production (p_{a})
 - Study vertex factorization hypothesis

Tag with Δm method

 $\mathrm{D}^{*\pm} \to \mathrm{D}^0 \pi_{\mathrm{s}}^{\pm} \to (\mathrm{K}^{-\!+} \pi^{\pm}) \pi_{\mathrm{s}}^{\pm}$

Differential Cross Section

• Kinematic range: $Q^{2} < 0.03 \text{ GeV}^{2}$ $0.2 < x_{L} < 0.925$ $|t| < 0.425 \text{ GeV}^{2}$ $|t| < 0.425 \text{ GeV}^{2}$ 2000 data taking, 9 pb^{-1} 9 pb^{-1} $(1-x_{L}) \text{ distribution as a function of t satisfies power law dN/dx_{L} \propto (1-x_{L})^{a(t)}$

Powers of photoproduced Leading Neutrons as a Function of t

 $a(t) = 1.06 \pm 0.08^{+0.52}_{-0.42} - (2.78 \pm 0.33^{+0.30}_{-0.42} GeV^{-2})t$

Interpretation in OPE Model

Pion flux

$$f_{\pi/p}(x_L,t) = \frac{1}{4\pi} \frac{8_{n\pi\,p}^2}{4\pi} \frac{-t}{(m_{\pi}^2 - t)^2} (1 - x_L)^{1 - 2\alpha_{\pi}(t)} (F(t))^2$$

 $f_{\pi/p} = A(t)(1 - x_r)^{a(t)}$ F(t) independent of x_{L} :

Cross section for neutron production:

r' r'

$$\frac{d^2 \sigma}{dx_L dt} = A(t)(1-x_L)^{a(t)} \sigma_{\gamma \pi}(s' = (1-x_L)W^2)$$

$$\lim \text{PHP:} \quad \sigma_{\gamma \pi}(s') = A(s')^{\epsilon} + B(s')^{-\eta}$$

$$\varepsilon \approx 0.1, \eta \approx 0.5 \longrightarrow a_{eff}(t) = 1 + \epsilon - 2\alpha_{\pi}^{,t}t$$

Interpretation in OPE Model

$$a_{eff}(t) = 1 + \epsilon - 2 \,\alpha_{\pi}^{,t} t$$

$$a(t) = 1.06 \pm 0.08^{+0.52}_{-0.42} - (2.78 \pm 0.33^{+0.30}_{-0.42} GeV^{-2})t$$

---> slope/2 =
$$\alpha'_{\pi}$$
 is the slope of the pion trajectory
---> the intercept is the intercept of the Pomeron trajectory $\alpha_{p}(0)$

$$\alpha_{\pi}$$
 '=(1.38±0.17^{+0.21}_{-0.15} GeV^{-2}) $\alpha_{IP}(0)$ =1.06±0.08^{+0.52}_{-0.42}

In the OPE picture expect $\alpha_{\pi}(t) = t - m_{\pi}^{2}$

$$x_{\pi}' = (1.38 \pm 0.17^{+0.21}_{-0.15} GeV^{-2})$$
 $\alpha_{IP}(0) = 1.06 \pm 0.08^{+0}_{-0}$

Measurement of Leading Protons in DIS

• Leading Protons in final state

=> non-perturbative side of strong interactions Hard Scale (central) <-> Soft Scale (forward)

Measurement of Leading Protons in DIS

- Leading protons in ep collisions in the kinematic range: 45 < W < 225 GeV $0 < p_T^2 < 0.5 \text{ GeV}^2$ $Q^2 > 3 \text{ GeV}^2$ $x_{\rm L} > 0.56$
- Cross sections for the reaction $e^+p \rightarrow e^+Xp$ vs. x_L , p_T^2 ,

$$d^{2}\sigma/dx_{L}dp_{T}^{2}$$

 P_{2}^{2} slopes

- 1996–1997 data taking, 12.8 pb⁻¹
- Protons detected in LPS

• P_T^2 range in each x_L bin dictated by the acceptance of the LPS stations

• Fit: A $exp(-bp_T^2)$

Sections: best Agreement with Gluon dominated ★ Open Diffractive Charm Differential Cross fit

 $\bigstar F_2^{D,cc}$ was measured

as $\beta \rightarrow 0$, for $x_{P} \sim 0.004$, ^{oc} contributes ~ 30 % to inclusive $F_{2}^{D(3)}$ \approx in all regions of x_{p} , $F_{2}^{D,cc}$ rises

- described by One-Pion-Exchange production mechanism \star D* in Photoproduction with a Leading Neutron _{xL} is
- * Ratio D* to Leading Neutrons is flat, Factorization Model holds, ratio higher than in PHP ratio -> rescattering

Summary

- ★ (1-x_L) distribution at a given t satisfies power law $dN/dx_L \propto (1-x_L)^{a(t)}$, Powers a(t) lie on linear trajectory in t
- * Interpretation in OPE picture the trajectory found by this fit is broadly consistent with Pion Trajectory
- * Leading Proton Differential Cross Section is flat in $x_L < 0.95$
- * Leading Proton b–slopes have no visible dependence on x₁