Measurement of Event Shapes and Jet Shapes at HERA

Thomas Kluge, RWTH Aachen on behalf of the H1 and ZEUS collaborations

EPS 2003 — July, 17-23 2003, Aachen

Introduction

measure energy-momentum flow \rightarrow study gluon radiation of QCD

shape variables are independent of total cross section

HERA: large E_T and Q range of 10..100 GeV for a single experiment

how far can one push QCD to the soft limit?

Jet Shapes

```
apply k_T jet cluster algorithm, require min. E_T
```

```
relevant scale E_T = 10..60 \text{ GeV}
```

```
high E_T \rightarrow fragmentation weak \rightarrow pQCD
```

study jet structure:

higher resolution y_{cut} : more subjets are resolved

 ψ measures the E_T within a cone of the jet

Subjet Multiplicity

ZEUS

 38.6 pb^{-1} NC DIS, $Q^2 > 125 \text{ GeV}^2$

jets build in the lab frame

fixed value of $y_{cut} = 10^{-2}$: the jets become narrower with increasing E_T

comparison with fixed-order QCD calculations with parton-to-hadron corrections applied

NLO calculations describe the data well \rightarrow determination of α_s

 $0.1187 \pm 0.0017 (\text{stat.})^{+0.0024}_{-0.0009} (\text{syst.})^{+0.0093}_{-0.0076} (\text{th.})$

Jet Shapes

PYTHIA Number of Jets thick jets thin jets gluons (<0.58>) quarks (<0.741>) 0.02 0.01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 $\psi(\mathbf{r=0.3})$ Number of Jets 0.3 gluons (<6.023>) quarks (<4.652>) \leftarrow thin jets thick jets 0.2 0.1

0

2

Selection with ψ and $n_{\rm sbj}$

"thick" jets := $\psi < 0.6$, $n_{\rm sbj} \ge 6$ \rightarrow purity of gluons 67% (MC)

"thin" jets := $\psi > 0.8$, $n_{sbj} \le 4$ \rightarrow purity of quarks 98% (MC)

12

10

 $n_{subjet}(y_{cut}=0.0005)$

Differential Jet Cross Sections

ZEUS

 82.2 pb^{-1} photoproduction, $(Q^2 < 1 \text{ GeV}^2)$

gluon jets are more forward than quark jets

improved description by PYTHIA with multiparton interactions(MI) at high η^{jet}

results are consistent with expectations for quark/gluon jets

0.7

0.8

Event Shapes

study whole hadronic final state without proton remnant

Breit frame to seperate proton remnant

Current hemisphere (CH): similar to $1/2 \ e^+e^-$ event

Observables defined in the CH: thrust τ , τ_c , jet broadening B, Cparameter and jet mass ρ_0

 $\eta_{
m breit} < 3$: out-of-event-plane momentum $K_{
m out}$ and azimuthal correlation χ

```
use k_t jet algorithm (no E_T cut!):
jet rates y_2, y_3 and y_4
```

```
relevant scale Q = 10..100 \text{ GeV}
```


Event Shapes

mean value:

 $\langle F \rangle = \langle F \rangle_{pQCD} + a_F \mathcal{P}$ $\langle F \rangle_{pQCD} = c_{1,F} \alpha_s(Q) + c_{2,F} \alpha_s^2(Q)$

distribution:

$$\frac{1}{\sigma_{\rm tot}} \frac{d\sigma(F)}{dF} = \frac{1}{\sigma_{\rm tot}} \frac{d\sigma^{\rm pQCD}(F - a_F \mathcal{P})}{dF}$$

power correction:

$$\mathcal{P} = \frac{16}{3\pi} \mathcal{M}' \frac{\mu_I}{Q} [\bar{\alpha}_0(\mu_I) - \alpha_s(Q) -$$

$$\frac{\beta_0}{2\pi} \left(\ln \frac{Q}{\mu_I} + \frac{K}{\beta_0} + 1 \right) \alpha_s^2(Q)]$$

power corrections take care of hadronization \rightarrow shift of distributions

2 free parameters: α_s and $\bar{\alpha}_0$

data fitted well by pQCD and power correction

common $\bar{\alpha}_0$ for means and distributions?

Resummed Event Shapes Distributions

resum terms $(\alpha_s \log^2 1/F)^n$ to all orders, log-R matching to fixed order important at low values \rightarrow QPM limit

larger interval described

Event Shapes Distributions

H1 preliminary

0.4

H1 preliminary

NLO(α²_c)+NLL+PC

0.2

 ρ_0

 $112 \text{ pb}^{-1} \text{ NC DIS, } Q^2 > 196 \text{ GeV}^2$ new analysis of distributions τ , τ_c , B, C and ρ_0

 τ_{c}

data fitted well by resummed pQCD and power correction

Event Shapes

results are consistent with $\bar{\alpha}_0 = 0.5$, within 10%

distributions give more consistent values for α_s , also with world average theoretical uncertainty $\approx 5-10\%$

Event Shapes Distributions

H1 preliminary
 NLO(α³_s)⁻(1+δ_{had}

-1.0

0.5

-0.5

H1 preliminary

RAPGAP

 $\log_{10} y3_{kt}$

0.0

1.0

χ

measurements of jet rates y_2 and y_3 plus 3-jet event shapes $K_{\rm out}$ and χ are performed

theory calculation for this observables:

generalized resummation program near completion, A. Banfi et al.

Summary

jet and event shapes offer a rich field for testing QCD

- the scale dependence of α_s is studied over a large range of Q resp. E_T
- a determination of α_s in an alternative way with subjet multiplicities
- quark and gluon enriched jet samples show consistent behaviour
- the universality of power corrections for event shape variables has been shown for mean values and distributions