Open charm production in DIS at HERA

S.Chekanov Argonne National Laboratory

On behalf of the H1 and ZEUS Collaborations

July 17-23, 2003, **EPS03**

- Introduction and theoretical framework
- Charm reconstruction methods
- Cross sections vs QCD predictions
- Extrapolation results
- Conclusions

Proton 820/920 GeV

Electron/positron 27.6 GeV

- Q² = -q²: 4-momentum transfer squared
- **x:** fraction of proton momentum carried by quark
- y: inelasticity parameter

Open charm production in DIS at HERA

S.Chekanov (ANL)

QCD studies using heavy quarks

• Heavy-quark mass provides a hard scale for reliable pQCD calculations ($m_c >> \Lambda_{DCD}$)

- 2 (extreme) charm treatments:
 - FFNS:
 - 1) charm quark is a heavy quark with mass m_c produced by the boson-gluon fusion (BGF) $Q^2 \sim m_c^2$
 - 2) can be described by fixed-order perturbative QCD (so far up to NLO) HVQDIS NLO calculations (B. Harris / J. Smith) based on DGLAP evolution for GRV, CTEQF3 PDF
 - **ZM-VFNS:** Assumes $Q^2 \gg m_c^2$ resums the terms $\ln^i (Q^2/m_c^2)$

charm quark is massless and can be represented by a parton density $f_c(x, \mu^2)$

Extrapolation schemes (VFNS) – a unified framework for all scales

D-meson reconstruction procedures

Best decay channel for reconstruction:

 $D^{*+} \to D^0 \pi_s^+ \to (K^- \pi^+) \pi_s^+ \qquad BR = 2.6 \%$ $f(c \to D^{*+}) \simeq 24 \%$ $\Delta M = M(D^{*+}) - M(D^0) \sim m_{\pi}$

Large background for:

$$D^+ \rightarrow K^- \pi^+ \pi^+ \qquad D^0 \rightarrow K^- \pi^-$$

ZEUS Combinations 2000 · ZEUS 98-00 Wrong-charge background 1500 Fit 1000 2444-4444444444 500 0 0.14 0.15 0.16 ΔM (GeV)

Good agreement between all measured D-meson cross sections and AROMA model (LO BGF) (Abs. 096, HI Collaboration)

S.Chekanov (ANL)

Inclusive D*-meson production

Kinematic range:

 $2 < Q^{2} < 100 \, GeV^{2}$ $-1.5 < \eta (D^{*}) < 1.5$ $p_{t} (D^{*}) > 2.5 \, GeV$

 $\sigma(ep \to eD^*X)$

- NLO QCD (HVQDIS program) based on the CTEQ5F3 PDF + DGLAP
- CASCADE model based on the CCFM evolution
- Both models use the Peterson fragmentation
- NLO QCD fails, while CASCADE describes the data

Can this be attributed to the CCFM evolution ?

Theoretical uncertainties: $m_c = 1.35 \, GeV \wedge \epsilon_c = 0.035$ $m_c = 1.5 \, GeV \wedge \epsilon_c = 0.10$

Resolved contribution to open charm production

RAPGAP (dir) Solution from resolved events:

It is unlikely that problems in the forward region can be attributed to "resolved" photon contribution

Charm production with associated dijets

For better understanding of the production mechanism – look at dijets

H1 preliminary 3 م 1.5 (X[[م 1.5 م H1 D CASCADE 2:0.10 CASCADE s=0.078 CASCADE s=0.035 RAPGAP dir area. 100 RAPGAP dr. HERWIG ARO MA 1 0.50 2 4 10 6 8 O. σ(D'X) [nb]

D* kinematics as before Dijet kinematic range $E_t > 4 GeV, E_t > 3 GeV$ $-1.5 < \eta < 1.5$

- Large sensitivity to fragmentation
- All models show discrepancies with the data
- Large difference between CASCADE and LO BGF predictions (AROMA/RAPGAP)

Inclusive D* production in DIS

ZEUS used highest statistics from HERA-I ~ 82 pb⁻¹ for inclusive D* measurements:

- Kinematic range extended to Q^2 =1000 GeV ²
- Calculations for e-p and e+p collisions separately
- Comparisons with NLO QCD, MC models, tests of different PDFs

Data vs NLO QCD

- $\eta(D^*)$ is sensitive to fragmentation and the proton PDF (i.e. the gluon density)
- ZEUS NLO fit gives a better agreement with the data than CTEQ5F3
- LUND string fragmentation from AROMA also improves the description

No need for the CCFM evolution ?

S.Chekanov (ANL)

Comparisons with Monte Carlo models; e-p vs e+p D^{*} cross sections

~3 σ difference between e+p and e-p data (increasing with Q²)
For Q² > 40 GeV²- e-p and e+p difference mainly in the forward region

First reported by ZEUS at ICHEP00 (Osaka) – now the results are final
Assume a statistical fluctuation report e-p and e+p data were combined

According to the Standard Model, cross sections for e-p and e+p should be equal– need more statistics from HERA II to check

Inclusive D* production in DIS: AROMA vs CASCADE

- CASCADE has a steeper rise in the forward direction than AROMA CCFM effect?
- Absolute normalization for CASCADE is too high
- Data agrees in shape with both AROMA and CASCADE
- Both models use the Lund string fragmentation (PF for H1 results shown before)

Extrapolated results

$$F_2^{c\bar{c}}(x, Q^2) = \frac{\sigma_{meas}}{\sigma_{theor}} F_{2,theor}^{c\bar{c}}(x, Q^2)$$

- Extrapolation factors ~ 2-5 to the full kinematic regions
- Fully rely on theory in regions where cross sections cannot be measured
- Model dependent ! The VFNS is not used - should be able to calculate charm kinematics
- $\sigma\,$ D* cross section in restricted kinematic range

Better agreement between data and the CCFM scheme when CASCADE is used for extrapolations
H1 and ZEUS data are consistent

Extrapolated results

Agreement between data and FFNS (HVQDIS with ZEUS NLO+PF) over a wide range in Q² and x

Extrapolation uncertainties: Lund string fragm., c-mass and b-component variations

Demonstrates the scaling violation in charm production

Summary

- Good agreement between data and QCD predictions for impressive range in Q² (1 1000 GeV²);
- Precise (and consistent) measurements from H1 and ZEUS over a wide kinematic region;
- Several effects can improve the agreement with the data, especially for the η cross sections:
 - QCD evolution CCFM vs DGLAP;
 - Gluon in the proton (ZEUS NLO fit gives a better agreement);
 - Fragmentation (LUND strings vs Peterson fragmentation), "beam-drag" effect?
 - QCD scheme for charm description? So far only the FFNS was tested...
- At present, no conclusive statement on the CCFM can be made;
- FFNS shows good agreement with the data up to highest Q² range measured (~1000 GeV²)

Does ZEUS observe a deviation from the Standard Model (e-p/e+p difference)? Can we look at charm kinematics at high Q^2 to verify the FFNS ? More data is needed

Charm results will benefit from HERA II upgrade (microvertex/forward tracking) Looking forward to lots more data soon (~1 fb⁻¹ per experiment)

