Scaling violations in inclusive jet photoproduction at HERA and the measurement of α_s

Mark Sutton University of Oxford 24th April 2003

24th April 2003 On behalf of the ZEUS Collaboration

Introduction

• The HERA collider provides a unique laboratory for the study of the hadronic final state, completing the coverage from e^+e^- to $p\overline{p}$.

• Jet data are now very precise at high transverse energy where non-perturbative effects are small of QCD and the extraction of QCD and the extraction of QCD

The parameters.
The parton model predicts cross sections that scale with the centre-of-mass energy.

• QCD predicts scaling violations due to the evolution of hadron parton density

not yet directly observed in photoproduction.

ARAH te noitouborqototd tei ni enoiteloiv gnileo2 - nottu2.M

The HERA collider

- HERA is the only lepton-hadron colliding beam machine.
- 1998-2000, 27.5 GeV leptons on 920 GeV protons, $\sqrt{s} = 318$ GeV.

HERA kinematics

A

- Kinematic variables...
- ronsed 4-momentum transfer ◊ (Negative) squared 4-momentum transfer

- $\mathcal{O}_{\mathbf{5}} = -(\mathcal{V} \mathcal{V}_{\mathbf{1}})_{\mathbf{5}}.$

Bjorken scaling variable

 $W^2 = (q+p)^2 = ys - Q^2$

- $\cdot \frac{\mathscr{A} \cdot a}{b \cdot d} \equiv h$

• Total hadronic centre-of-mass energy,

dx

b

b+dx

Ч

Y

• For photoproduction, $Q^2 \sim 0 \text{ GeV}^2$, $W^2 \approx ys$

Photoproduction at HERA

- In photoproduction the photon has a very low virtuality, at HERA $\sim 10^{-3}$ GeV² Perturbatively calculable when there is a hard scale provided by high transverse energy jets.
- To $O(\alpha \alpha_s)$, two types of process contribute to the high E_T jet production.

- At Leading order picture, two jets, balanced in $\overline{\mathbf{L}}_{\mathbf{T}}$, back-to-back in ϕ .
- Different hadronic centre-of-mass energies, $W_{\gamma p}$ are accessible within the same data set.

Snoitouborg tet production?

- algorithm $\Pi = K_T$ algorithm in the inclusive mode. • For perturbativly calculable cross sections, need an infrared and collinear safe jet
- restriction of phase space for the second highest transverse energy jet. In predict dijet cross sections, but large renormalisation scale uncertainty due to • Fixed order calculations available at $NLO - O(\alpha \alpha^2)$.
- In Smaller renormalisation scale uncertainty, more reliable QCD predictions but require it to be within the detector acceptance, • Inclusive jet production does not restrict the phase space of the second jet, or even

at the cost of less information on the event kinematics.

Next-to-leading order prediction

- NLO calculation here from Klasen, Kleinwort and Kramer, using the phase space slicing method to cancel the infrared and collinear divergences.
- \diamond Two loop $\alpha_s(M_Z) = 0.1175.$
- \triangleright Renormalisation and factorisation scales $\mu_F = \mu_R = E_T^{\text{let}}$.
- ► MRST99 proton, and GRV photon.
- Parton level NLO corrected to hadron level using PYTHIA.
- Theoretical uncertainties shown
- ▷ Corrections due to terms beyong NLO, estimated from scale variation $\frac{1}{2}E_{jet}^{jet} < \mu_R < 2E_T^{jet}$
- ▷ Photon and proton PDF's AFG-HO (photon) and MBFIT (proton).
- ▷ 0.1125 < $\alpha_s(M_Z) < 0.1225.$
- ▷ Hadronisation (HERWIG) <2.5%.
- Indicated as shaded band.

The inclusive cross section

• Cross section for all jets,

 $17 < E_T^{\text{jet}} < 95 \text{ GeV}, \quad -1 < \eta^{\text{jet}} < 2.5$

 $142 < W_{\gamma p} < 293 \text{ GeV}, \quad Q^2 \leq 1 \text{ GeV}^2$

- For $E_T^{\text{let}} < 45$ GeV, resolved processes dominant.
- Small theoretical uncertainties...
- ▷ Renormalisation scale $\sim 10\%$,
- , \mathbb{A}° Photon and proton pdfs $\sim 5\%$,
- $ho \alpha_s \sim 8\%$ at low $E_{\rm Jet}^{\rm r}$.
- Good agreement of NLO with the data over many orders of magnitude.

Scaling violations

• With the scaling hypothesis, the scaled jet invariant cross section

$$(E_{jet}^{T})^{4}E_{jet} \frac{\mathrm{d}p_{X}^{X}\mathrm{d}p_{Y}^{Y}\mathrm{d}p_{Z}^{Y}}{\mathrm{d}p_{jet}^{Y}\mathrm{d}p_{Z}^{Y}}$$

fo notion of as a

$$xL \equiv \frac{M}{5E_{\rm jef}^L}$$

should be independent of $W_{\gamma p}$ and the cross sections in distinct ranges of $W_{\gamma p}$...

V9Đ 081 =
$$_{q\gamma}W$$
 meam - V9Đ 161 > $_{q\gamma}W$ > 601

$$240 < W_{\gamma p} < 270 \text{ GeV} - \text{mean } W_{\gamma p} = 255 \text{ GeV}$$

- Unfold for different photon flux at each $W_{\gamma p}$ in the ratio.
- Restrict jets to $-2 < \eta_{\gamma p}^{\text{jet}} < 0$ in the γp centre-of-mass frame.

The scaled cross section

Scaling violations (contd.)

- Ratio of cross sections,
- $< W_{\gamma p} > = 180$ GeV with respect to
- $< W_{\gamma p} >= 255 \, \mathrm{GeV}.$
- Theoretical uncertainties reduced...
- ▷ Renormalisation scale $\sim 2.5\%$,
- \diamond Photon, proton pdfs $\sim 5\%, 0.3\%,$
- $\cdot\%_{\mathcal{T}} \sim {}^{s}\mathcal{D} \lhd$
- NLO consistent with data.
- First observation of scaling violations in jet photoproduction.

AAH the running of α_s at HERA

- Extract α_s in each E_T^{let} bin using the MRST99 pdf sets.
- Clear running of α_s in a single

measurement.

$s\omega$ lo gainant adT

- Spans the overlap region of existing ZEUS data.
- Running seen over an order of magnitude in scale variation from ZEUS data alone.

tion from ZEUS data alone.

existing ZEUS data.

of magnitude in scale varia-

so lo gainaur sal

.ebutingsm • Including CDF data, see α_s running with scale variation well over an order of

 $\alpha_s(M_Z) = 0.1224 \pm 0.0001 (\text{stat.})^{+0.0020} (\text{exp.})^{+0.0054} (\text{exp.})^{-0.0054} (\text{th.})$

- Running the coupling back to the Z^0 mass...
- Small experimental uncertainties.
- Consistent with recent fit of Bethke, theory error still dominates.

Comparison with other measurements

The QCD β function

conclusions

- The inclusive single jet photoproduction cross section has been measured with high precision.
- The theoretical uncertainties on the NLO predictions are small, and the calculation is able to reproduce the measured cross section over many orders of magnitude.
- Scaling violations have been seen in jet photoproduction for the first time.
- The value of the QCD coupling, α_s , has been extracted from photoproduction data for the first time with a precision comparable with the world average, and it's running behaviour clearly seen.
- Looking forward to improved theoretical predictions to match the existing data, and the increased precision data, at even higher transverse energy, expected from HERA II.