11th International Workshop on Deep Inelastic Scattering and QCD

Inclusive D* Meson and Dijet Production with Charm in DIS

Sebastian Schmidt, MPI Munich for the H1 Collaboration

St. Petersburg, 23-27/04/2003

- Introduction
- $D^{*\pm}$ cross sections
- Dijets associated with $D^{*\pm}$ mesons
- Conclusions

Charm Production in LO

... dominated by BGF:

• Kinematics:

 $\sqrt{s} = 318 \,\mathrm{GeV}$ Q^2 : 4-momentum transfer² x: Bjorken x

y: inelasticity

 W^2 : mass² of hadronic final state

• $D^{*\pm}$ from fragmentation:

$$\rightarrow \eta = -\ln \tan \left(\frac{\theta_{D^*}}{2}\right)$$
: pseudo rapidity

 $ightarrow p_t$: transverse momentum

$$ightarrow z_{D^*} = rac{P \cdot p_{D^*}}{P \cdot q}$$
: elasticity

Models for Charm Production

- Q^2 and m_Q^2 provide hard scale to allow pQCD calculations
- Various schemes:
 - FFNS (massive and massless approach)
 - VFNS (no Monte Carlo available for DIS)
- We are using the massive FFNS approach,
 - \rightarrow reliable for $Q^2 \approx m_Q^2$, breakdown for $Q^2 \gg m_Q^2$

Models for Charm Production

Various evolution schemes:

- DGLAP: evolution of parton densities by DGLAP equation
 - \rightarrow HVQDIS (Harris, Smith): generator for $c\bar{c}$ and $c\bar{c}g$ in NLO (using CTEQ5F3)
 - $D^{*\pm}$ added using Peterson fragmentation with transverse momentum smearing
 - \rightarrow RAPGAP (Jung): MC for LO + parton shower

direct and resolved contributions of γ^*

- CCFM evolution: using angular ordering and unintegrated gluon density, more appropriate for small x
 - \rightarrow CASCADE (Jung, Salam): MC for CCFM generating a complete hadronic final state

Hadrionization of the charm quark: Peterson fragmentation with parameter ϵ

 \Rightarrow compare our data with the different models

Charm Tagging

Inclusive D* Cross Section

- kinematical range: $2 < Q^2 < 100 \, {\rm GeV^2}$, 0.05 < y < 0.7
- visible range: $p_{t,D^*} > 1.5\,{\rm GeV}$, $\left|\eta_{D^*}\right| < 1.5$

$$\sigma^{\rm vis}(e^+p \longrightarrow e^+D^{*\pm}X) = 7.72 \pm 0.23~{\rm (stat.)} \pm 1.09~{\rm (syst.)}~{\rm nb}$$

• model predictions:

	HVQDIS	CASCADE	RAPGAP	
	NLO DGLAP	CCFM	DGLAP LO+PS	
			dir+res	dir only
$m_c = 1.5{\rm GeV}, \epsilon = 0.100$	$4.90\mathrm{nb}$	$6.79\mathrm{nb}$		
$m_c = 1.4 \mathrm{GeV}, \epsilon = 0.078$	$5.54\mathrm{nb}$	$7.50\mathrm{nb}$	$8.55\mathrm{nb}$	$6.78\mathrm{nb}$
$m_c = 1.3{\rm GeV}, \epsilon = 0.035$	$6.62\mathrm{nb}$	$8.82\mathrm{nb}$		

 \rightarrow HVQDIS: shapes in reasonable agreement (below data at large η , small z_{D^*})

 \rightarrow CASCADE: agreement in shapes and normalization

Motivation:

Jets Associated with $D^{*\pm}$ mesons

• differences between NLO DGLAP and data for large η :

beauty (\rightarrow only small contribution), resolved contributions?

• check our understanding of charm production mechanism

by tagging both charm quarks!

- \bullet but asking for 2 $D^{*\pm}$ mesons reduces statistics significantly
- alternative: JETS

Apply jet algorithm to events with one tagged $D^{*\pm}$ meson:

- ullet inclusive k_t cluster algorithm in the Breit frame
- \bullet at least 2 jets with $E_t^{\rm jet\,1}>4\,{\rm GeV},\,E_t^{\rm jet\,2}>3\,{\rm GeV}$
- $\bullet -1 < \eta_{\rm lab}^{\rm jet \; 1,2} < 2$

$D*\pm +$ Dijet Cross Section

- $\bullet\,$ kinematical range: $2 < Q^2 < 100\,{\rm GeV^2}$, 0.05 < y < 0.7
- visible range for $D^{*\pm}$: $p_{t,D^*} > 1.5~{\rm GeV},$ $\left|\eta_{D^*}\right| < 1.5$
- inclusive k_t cluster algorithm in the Breit frame
- $\bullet~$ at least 2 jets with $E_t^{\rm jet\,1}>4\,{\rm GeV},~E_t^{\rm jet\,2}>3\,{\rm GeV}$

$$\bullet \ -1 < \eta_{\rm lab}^{\rm jet \ 1,2} < 2$$

$$\sigma^{\rm vis}(e^+p \longrightarrow e^+D^{*\pm} + jj + X) = 1.63 \pm 0.10~{\rm (stat.)} \pm 0.25~{\rm (syst.)}~{\rm nb}$$

• model predictions:

	RAPGAP DGLAP LO+PS		CASCADE	
	dir+res	dir only	CCFM	
$m_c = 1.4 \mathrm{GeV}, \epsilon = 0.078$	$1.23\mathrm{nb}$	$1.07\mathrm{nb}$	$2.05\mathrm{nb}$	

Comparison $D^{*\pm}$ vs. $D^{*\pm}$ + dijets

 \rightarrow RAPGAP direct and direct+resolved below the data for large E_t^{max} and small $\Delta \eta$ \rightarrow CASCADE above the data

Conclusions

Measurement of $D^{*\pm}$ meson production and $D^{*\pm}$ meson + dijet production in DIS:

- published H1 results on $D^{*\pm}$ mesons are confirmed with higher statistics:
 - \rightarrow NLO DGLAP: differences at small p_t and large η
 - \rightarrow CCFM: in general in better agreement with data
- first H1 measurement of $D^{*\pm}$ meson + dijet production

Measurement of $D^{*\pm}$ meson production in DIS

- kinematical range: $2 < Q^2 < 100 \, {\rm GeV^2}$, 0.05 < y < 0.7
- visible range: $p_{t,D^*} > 1.5\,{\rm GeV}$, $\left|\eta_{D^*}\right| < 1.5$

- confirms published H1 results with higher statistics
- NLO DGLAP (HVQDIS): shapes in reasonable agreement (deviations in η_{D^*})
- CASCADE (CCFM): better description of shape and normalisation

Measurement of Dijets Associated with $D^{*\pm}$ mesons in DIS

- inclusive k_t cluster algorithm in the Breit frame
- $\bullet\,$ at least two jets with $E_t^{\rm jet\,1}>4\,{\rm GeV},\,E_t^{\rm jet\,2}>3\,{\rm GeV}$

 comparison with LO DGLAP (RAPGAP direct and direct+resolved contribution) and CASCADE (CCFM)