Prompt Photon Production at HERA

DIS 2003 Workshop, St. Petersburg

Rachid Lemrani

- **Photo-production**
 - Inclusive prompt-photons
 - Prompt-photons with associated jets
- **Prompt photons in Deep Inelastic Scattering**
- Conclusion

Prompt photons in ep scattering

- prompt photon events have a photon in the final state with substantial E_T
- advantage compared to jet analysis:
 - direct access by γ to hard interaction (no hadronisation)
 - good energy measurement
- but:
 - small cross section
 - $-\pi^0$, η background difficult to suppress

Prompt photons in pQCD

- prompt photons produced in direct and resolved processes and in fragmentation
- \Rightarrow test pQCD calculations :
 - NLO matrix elements
 - PDFs of the photon and the proton
- NLO for comparison with data (Fontannaz, Guillet and Heinrich [hep-ph/0105121])
 PDFs AFG for photon MRST2 for proton Bourhis fragmentation functions.

other calculations:

Gordon, Vogelsang [hep-ph/9606457] Krawczyk, Zembrzuski [hep-ph/9810253] DIS: Gehrmann-De Ridder, Kramer and Spiesberger [hep-ph/0003082]

Contributions to the total cross section

Prompt photons in the H1 detector

⇒ Signature: Well isolated compact shower in the Liquid Argon Calorimeter + track veto

 $\Rightarrow Good granularity to separate$ $\gamma's from <math>\pi^0$'s and η 's up to $E_T \approx 10 \text{ GeV}$

Prompt photon production at HERA

Kinematic region

H1 photo-production	ZEUS photo-production	ZEUS DIS	
1996-2000 data: 105 pb ⁻¹	1996-97 data: 38.4 pb ⁻¹	1996-2000 data: 121 pb ⁻¹	
$Q^2 < 1 \text{ GeV}^2$		$Q^2 > 35 \ GeV^2$	
$5 < E_T^{\gamma} < 10 \text{ GeV} (E_T^{\gamma} < 15 \text{ GeV} \text{ for } d\sigma/dE_T^{\gamma})$			
$-1 < \eta^{\gamma} < 0.9$	$-0.7 < \eta^{\gamma} < 0.9$		
122 < W < 266 GeV	$134 < W < 285 \ { m GeV}$		
Isolation: hadronic $E_T^{cone} < 0.1 E_T^{\gamma}$ (in cone with $R = \sqrt{\Delta \Phi^2 + \Delta \eta^2} = 1$)			

Prompt photon + jet

inclusive k _T		cone algorithm $\mathbf{R} = 0.7$
$E_T^{jet} > 4.5 \; ext{GeV}$	${E_T^{jet}} > 5~{ m GeV}$	$\mathbf{E}_{\mathrm{T}}^{\mathrm{jet}} > 6~\mathrm{GeV}$
$-1. < \eta^{jet} < 2.3$	$-1.5 < \eta^{jet} < 1.8$	

γ , π^0 , η separation at ZEUS

• use shower shape variables for γ 's, π^0 's and η 's

 $- < \delta Z > = \sum E_{cell} \cdot |Z_{cell} - \langle Z \rangle | / \sum E_{cell}$

- $\qquad \mathbf{f_{max}} = \text{fraction of energy of } \gamma$ in the most energetic calorimeter cell
- η fraction from high $< \delta Z >$ range
- cut at 0.65 in $< \delta Z >$
- signal extracted by a fit

γ signal extraction at H1

• use shower shape variables for γ 's, π^0 's and η 's

- Radius =
$$\frac{\sum_{\text{cells}} w_i r_i}{\sum_{\text{cells}} w_i}$$

- Hot Core Fraction = $\frac{\text{Energy in shower core}}{\text{Total Energy}}$

define a likelihood discriminator

• **fit discriminator in** (E_T, η) **bins**

(energy dependence and changing calo granularity) — summed distributions shown

 \Rightarrow Shower shape variables well described by the fit.

Inclusive Prompt Photons cross section

• ZEUS above H1 at low η^{γ} , but data consistent within errors

Comparison with NLO and PYTHIA

- pQCD (NLO, Fontannaz et al.) describes the data within errors
- **PYTHIA: describes shapes, but too low**

Effect of multiple interactions

⇒ Hadronic energy in the isolation cone

Prompt photon production at HERA

 \Rightarrow

Jet requirement

- $\Rightarrow NLO calculations lose their predictive power (same effect in di-jets)$
- $\Rightarrow Avoid symmetric cuts, for following results, H1 uses E_T^{jet} > 4.5 \text{ GeV}$

Prompt photon + jet cross section vs \mathbf{E}_T^{γ} , η^{γ} and η^{jet}

Comparison with LO and NLO (for NLO scale variation 0.5 E_T^{γ} to 2 E_T^{γ})

- Correction to NLO for multiple interactions applied by PYTHIA
- \rightarrow improves description at large η^{γ}

- substantial and negative NLO corrections at $\eta^{jet} < 0$
- ⇒ NLO describes the data within errors

Prompt photon production at HERA

- Infrared instability at $x_{\gamma} = 1$ smoothed by large binning
- Multiple Interactions effect at $x_{\gamma} < 0.5$ where resolved contributions dominate

\Rightarrow NLO describes the data

Fontannaz et al [hep-ph/0107262]

Prompt photon production at HERA

Prompt photons in DIS

Conclusions

Photo-production

• Inclusive prompt γ cross sections as a function of E_T^{γ} and η^{γ} well described by pQCD in NLO

PYTHIA event generator describes data in shape

prompt γ + Jet cross sections well described by NLO
 (especially if multiple interactions corrections, based on PYTHIA, are applied)

DIS

• First data reasonably well described by NLO within large errors