ZEUS Forward Jets in DIS

Sabine Lammers University of Wisconsin on behalf of the ZEUS Collaboration DIS03 April 24, 2003

- Theoretical motivation
- NLO successes: F_2 and dijets

1

- Inclusive Jets
- Conclusions

Deep Inelastic Scattering at HERA

 γ_h

xp+q

HERA is an electron-proton collider operating at center-ofmass energy $\sqrt{s} \approx 300 \, GeV$

 $x_{Bj} =$

 $Q^{2} = -q^{2} = -(k-k')^{2}$

 $\frac{Q^2}{2p \cdot q} \quad \begin{array}{c} \text{fraction of proton's} \\ \text{momentum carried} \\ \text{by the struck parton} \end{array}$

 $y_{Bj} = \frac{p \cdot q}{p \cdot k}$ fraction of electron's energy transferred to the proton in the proton's rest frame

$$Q^2 = s x y$$

DIS cross section is an incoherent sum of electronparton scattering, weighted by parton distribution probabilities.

Proton structure function is a weighted sum of the of the quark densities:

$$F_{2}(x,Q^{2}) = \sum_{quarks} A_{q}(Q^{2}) \cdot (xq(x,Q^{2}) + x\overline{q}(x,Q^{2}))$$

Parton Evolution Schemes

Perturbative expansion of parton evolution equations:

~ $A_{mn} (\ln Q^2)^m (\ln \frac{1}{x})^n$ (can't be calculated)

DGLAP resummation: $\sum (\alpha_s \ln Q^2)^n$

BFKL resummation:

$$\sum \left(\alpha_s \ln \frac{1}{x}\right)^n$$

QCD alone cannot predict parton densities! (only evolution of those densities)

Experimental input is needed to determine proton pdfs

- necessary for testing accuracy of QCD description of proton
- proton pdf's important in calculation of hard processes in, e.g. p-p scattering

Proton structure function $F_2(x,Q^2)$

 F_2 measured by counting events with an scattered electron at a certain $x_{_{Bj}}$ and Q^2 (fully inclusive measurement)

HERA structure function data perfectly described by parton densities that evolve according to DGLAP equations at next-to-leading order.

> $6.3 \text{ x}10^{-5} < x_{_{Bj}} < 0.65$ $1 < Q^2 < 25000 \text{ GeV}^2$

Probing the Hadronic Final State: Dijets

Dijets: Boson-gluon fusion and QCD compton diagrams

Proton pdf's extracted from F_2 are used for calculation of dijet production \rightarrow tests universality of proton pdf's

NLO QCD interfaced with pdf's can also describe the dijet data over a large range of Q^2 .

Event Signatures: BFKL vs DGLAP

Measurement philosophy: Identify BGF type events with a hard forward jet while remaining as inclusive as possible in order to make a good comparison with NLO.

First proposed by Mueller, Navalet

A requirement on the hadronic angle (current jet) allows the exploration of lower x_{Bi}

Event Selection

Data Set: ZEUS 96/97 (~38.6 pb⁻¹) Monte Carlo: Detector acceptance estimated with LO Color Dipole Model (CDM) implemented with Ariadne, using CTEQ4M PDFs

Phase space selection:

•
$$Q^2 > 25 \text{ GeV}$$

•
$$E_{T,jet} > 6 \text{ GeV}$$

• $-1 < \eta_{jet} < 3$ $\eta = -\ln(\tan\frac{\theta}{2})$

DIS selection made by requesting high-energy positron in the final state with additional cuts applied to reject background.

Jets are selected in the lab frame using the longitudinally invariant k_T -cluster algorithm: Catani et.al.; Ellis & Soper

$$i$$

$$d_{i,j} = min(E_{T,i}^{2}, E_{T,j}^{2})[\Delta \eta^{2} + \Delta \phi^{2}]$$

Combine particles i and j into a jet if $d_{i,j}$ is smaller of $\{d_i, d_{i,j}\}$.

Leading Order Monte Carlos

- Parton Distribution Function CTEC
- LO QCD Matrix Elements
- Parton Showering
- Hadronisation

CTEQ4M
 hard subprocess
 model-dependent

<u>LEPTO</u>

- Parton showering a la DGLAP
- Lund String Model

ARIADNE

- Parton showering with CDM (Color Dipole Model: BFKL-like)
- Lund String Model

NLO Calculations

2 implementations of NLO calculation by DISENT

- employs subtraction method
- $\mu_r = \mu_f = Q$
- estimated renormalisation scale uncertainty: $\frac{Q}{2} < \mu_r < 2Q$
- PDF : MRST99
- corrected from partons to hadrons using Ariadne (CDM MC)

Measurement of hadronic cross sections for **inclusive** jet production: $d\sigma/d\eta_{jet}$, $d\sigma/dE_{T, jet}$

DISENT implementation of NLO calculation LO = $O(\alpha_s^{0})$; NLO = $O(\alpha_s^{1})$ MRST99 PDF's Data corrected for ISR/FSR effects

ZEUS

Differential cross sections in kinematic quantities: $d\sigma/dx_{Bj}$, $d\sigma/dQ^2$

Large discrepancy in the forward and central regions of the detector are localized in the smallest $x_{_{Bi}}$ values.

Comparison with totally inclusive cross section

Introducing a hard cut-off in the jet E_{T} significantly limits the phase space \Rightarrow inclusive jet cross section does not dominate " F_{2} " at low x_{Bj} and Q^{2}

Redefinition of phase space

NLO agrees with data within larger renormalization scale uncertainty

Conclusions

Summary:

- Inclusive jet cross sections at Q² > 25 GeV² have been measured over the full rapidity acceptance region;
- NLO QCD fails to describe the inclusive jet rate in central and forward (proton direction) regions of the detector;
 - \rightarrow discrepancy between data and theory is localized in low $x_{_{Bi}}$ region

Measurements have been made in a region $\cos \gamma_{\rm h} < 0$ so as

to suppress the contribution from the quark-parton-model process in the forward region;

- NLO QCD calculations are consistent with the data albeit with still sizeable theoretical uncertainties;
- → a much better description of the measured inclusive jet rate at low x_{Bi} by the calculations is obtained
- Large renormalization scale uncertainty swamps any possible signal for BFKL in this region of phase space.