Multijets in NC DIS and Jets in CC DIS at HERA

Nils Krumnack (Hamburg Univ.) on behalf of the ZEUS collaboration

DIS workshop, St.Petersburg, April 2003

- Motivation
- Multijets in NC DIS
- Jets in CC DIS
- Jet Multiplicities in CC DIS
- Conclusions

Motivation

- QCD is the theory of the strong interaction
- HERA is a very good machine for studying QCD
- jet production provides a detailed test of perturbative QCD in a wide range of processes and over a wide range of scales
- multijets (2 and 3) enable tests of QCD matrix elements at higher orders in α_s
- measuring jets in charged current gives the possibility to test QCD matrix elements and flavour changing electroweak theory at the same time
- subjets allow a detailed study of the jet structure
- precision measurements allow the extraction of α_s

Kinematic variables

neutral current: $e^+p \rightarrow e^+X$ propagator: (γ, Z)

charged current: $e^+p \rightarrow \nu X$ propagator: (W⁺)

beam energies at HERA: $E_p = 820 \text{ GeV}/920 \text{ GeV}$ $E_e = 27.52 \text{ GeV}$ Variables:

- boson virtuality: $Q^2 = -q^2$
- fraction of proton energy carried by struck parton: $x = Q^2/2pq$
- fraction of electron energy transferred: y = pq/pk
- center of mass energy squared $s = (p + k)^2$
- angle of hadronic system in the lab: $\cos \gamma_h = \frac{(\Sigma p_x)^2 + (\Sigma p_y)^2 - (\Sigma E - p_z)^2}{(\Sigma p_x)^2 + (\Sigma P_y)^2 + (\Sigma E - p_z)^2}$

center of mass energy at HERA: $1995 \rightarrow 97$: $\sqrt{s} \approx 300 \text{ GeV}$ $1998 \rightarrow 00$: $\sqrt{s} \approx 318 \text{ GeV}_3$

Jet Kinematics

jet definition:

- using longitudinally invariant KT algorithm (Catani et. al.; Ellis & Soper)
- distance between energy deposits: $d_{ij} = \min(E_{T,i}^2, E_{T,j}^2) * (\Delta \eta^2 + \Delta \phi^2)$
- merging deposits as long as $d_{ij} < \min(E_{T,i}^2, E_{T,j}^2)$

jet variables:

- pseudorapidity: $\eta = -\ln(tan(\theta/2))$
- transverse energy: $E_T = \sqrt{p_x^2 + p_y^2}$
- invariant mass: $m = \sqrt{\Sigma p_i^2}$

Breit frame:

frame in which:

- photon and quark hit head on
- photon is only space-like:
 ⇒quark gets reflected
- jets balance each other in p_T \Rightarrow for dijets: ambiguity ordering jets in E_T

Motivation for studying Multijets

- trijets: adding a gluon radiation to dijets or splitting a gluon in a $q\bar{q}$ pair \Rightarrow direct test of QCD at intrinsically higher order
- trijet cross section: sensitive to $\mathcal{O}(\alpha_s^2)$ in LO \Rightarrow higher sensitivity to α_s
- more degrees of freedom
 ⇒ QCD test in detail
- looking at the cross section ratio trijets over dijets many theoretical and experimental uncertainties cancel out

Event selection for Multijets

- ZEUS data 98–00: 82.2 pb⁻¹
- reconstruction in Breit frame
- using longitudinally invariant KT jet cluster algorithm
- kinematic selection:
 - $10 \,\mathrm{GeV^2} < Q^2 < 5000 \,\mathrm{GeV^2}$
 - 0.04 < y < 0.6
 - $-\cos\gamma_h < 0.7$
- jet selection:
 - for all jets: $E_T^{breit} > 5 \text{ GeV}$
 - for all jets: $-1 < \eta^{lab} < 2.5$
 - $m_{jets} > 25 \, \text{GeV}$

Selecting events over a large kinematic range

Selected 30668 dijet events

Selected 12436 trijet events

- comparison with NLO QCD: dijets at NLO - O(α_s²): dσ_{2jets}^{NLO} = α_s(A₂ + B₂α_s) trijets at NLO - O(α_s³): dσ_{3jets}^{NLO} = α_s²(A₃ + B₃α_s)
- provided by program NLOJET by Nagy, Trócsányi
- employs subtraction method
- renormalisation scale $\mu_r = \bar{E}_T$, factorisation scale $\mu_f = \bar{E}_T$
- dijets: $\bar{E}_T = (E_{T,1} + E_{T,2})/2$
- trijets: $\bar{E}_T = (E_{T,1} + E_{T,2} + E_{T,3})/3$
- estimated renormalisation scale uncertainty by varying $\bar{E}_T/2 < \mu_r, \mu_f < 2 * \bar{E}_T$
- PDF: CTEQ6
- corrected from partons to hadrons employing the Lund String Fragmentation model using the Monte Carlo event generator Lepto (6.5.1) in combination with Jetset

Dijets in NC: E_T dependence

ZEUS

jets ordered in E_T

NLO calculations describe the E_T distribution for dijets

Dijets in NC: η dependence

ZEUS

jets ordered in η

NLO calculations describe the η distribution for dijets

Trijets in NC: E_T dependence

ZEUS

jets ordered in E_T

NLO calculations describe the E_T distribution for trijets

Trijets in NC: η dependence

ZEUS

jets ordered in η

NLO calculations describe the η distribution for trijets

Multijets in NC: Q^2 dependence

ZEUS

NLO calculation changes shape during renormalisation scale variation problematic?

NLO calculations describe the Q^2 distribution for both di- and trijets

Multijets in NC: σ_3/σ_2

ZEUS

taking cross section ratio reduced both the theoretical and the experimental uncertainties

NLO calculations describe the cross section ratio trijets over dijets

Motivation for Charged Current Measurements

- measuring jet cross sections is a direct test of pQCD
- measuring jet cross sections in CC provides a test for flavour changing electroweak theory and QCD
- study of subjet multiplicities allows precision test of QCD calculation and extraction of α_s

Event selection for CC

- using 95–00 data (127.7 pb⁻¹)
- reconstruction in lab frame
- using longitudinally invariant KT jet cluster algorithm
- kinematic selection:
 - $Q^2 > 200 \, \text{GeV}^2$
 - y < 0.9
- jet selection:
 - $E_T > 14 \,\text{GeV}$ (first jet)
 - $E_T > 5 \text{ GeV}$ (second jet)
 - $-1 < \eta_{jet}^{lab} < 2$

Selecting events over a controlled kinematic range

Selected 1865 one jet events

Selected 282 dijet events

- comparison with NLO QCD: inclusive at NLO - O(α¹_s): dσ^{NLO}_{inclusive} = (A₁ + B₁α_s) dijets at NLO - O(α²_s): dσ^{NLO}_{2jets} = α_s(A₂ + B₂α_s)
- provided by program MEPJET by Mirkes, Zeppenfeld, Willfahrt
- employs phase space slicing method
- renormalisation scale $\mu_r = Q$, factorisation scale $\mu_f = Q$
- estimated renormalisation scale uncertainty by varying $Q/2 < \mu_r < 2 * Q$
- PDF: CTEQ4M
- corrected from partons to hadrons using leading order Monte Carlo Ariadne (4.08) and Lepto (6.5.1)

dependence of CC inclusive jets on E_T

counting all jets in the event

MEPJET describes the shape but underestimates the normalisitation at low E_T

dependence of CC dijets on m_{jets}

MEPJET describes the shape but underestimates normalisation by $\sim 25\%.$

measurement of subjets and subjet multiplicities

KT algorithm defines distance between energy deposits as $d_{ij} = \min(E_{T,i}^2, E_{T,j}^2) * (\Delta \eta^2 + \Delta \phi^2)$

merging all energy deposits with KT algorithm until $d_{ij} \geq y_{cut} \cdot E_T^2$

subjets are jet like structures within the jet.

definition ensures that $\min(E_{T,1}, E_{T,2}) \cdot d \ge \sqrt{y_{cut}} \cdot E_T$

subjet multiplicity $< n_{sbj} >$ is the average number of subjets per jets.

measurement of subjet multiplicities allows for a precise test of the QCD calculations for the development of jet structure

 E_T^{jet} : E_T of the jet for which the subjet multiplicity is measured. measurement sensitive to α_s

extracted preliminary value: $\alpha_s = 0.1202 \pm 0.0052(\text{stat})^{+0.0060}_{-0.0019}(\text{syst})^{+0.0065}_{-0.0053}(\text{theo})$

Conclusions

- first ZEUS measurement of trijets over a large kinematic range
- measured NC dijet and trijet cross sections.
 ⇒test of higher order matrix elements
- NLO QCD (NLOJET) described the dijet and trijet cross sections
- measured CC inclusive, dijet and subjet cross sections
 ⇒test of flavour changing matrix elements
- NLO QCD (MEPJET) describes the shape of the cross section but underestimates its normalisation.
- extracted α_s from CC subject cross sections
- first measurement of α_s from jet production in CC events at HERA
- jet production measures with high precision for intrinsically higher order processes and the interplay with electroweak effects
- for most cases the data are more precise than the predictions \Rightarrow theory needs improvements
- looking forward to high precision measurements at even higher E_T and Q^2 with HERA $\rm II$