Inelastic photo- and electroproduction of charmonium

Igor Katkov Skobeltsyn Institute of Nuclear Physics Moscow State University

XI International Workshop on Deep Inelastic Scattering (DIS 2003) St. Petersburg, 23–27 April 2003

- Introduction
- Inelastic Photoproduction of Charmonium
- Inelastic J/ψ Electroproduction
- Summary

Introduction

• Process $e + p \rightarrow e + J/\psi + X$:

 $\rightarrow z$ - fraction of virtual photon (γ^*) energy transfered to J/ψ in proton rest frame (inelasticity) \rightarrow dominant $c\bar{c}$ production mechanism: BGF \Rightarrow information on gluon density in proton

- \rightarrow different approaches to describe
- formation of $c\overline{c}$ bound state
- Colour Singlet Model:
 - $\rightarrow c \bar{c}$ has quantum numbers of J/ψ
 - $\rightarrow \Gamma_{\psi \rightarrow l^+ l^-}$ the only phenomenological parameter
 - \rightarrow failed to describe high $p_{\rm T}$ production of J/ψ
 - at Tevatron \Rightarrow NRQCD
- NRQCD factorization approach:

 → cc̄ in colour octet (CO) states contribute
 to J/ψ production (at higher z for direct and
 lower z for resolved)
 → more parameters: LDMEs; LDMEs are believed
 to be process independent
- k_t -factorization approach:
 - \rightarrow non-collinear parton dynamics (BFKL evolution equations)
 - \rightarrow unintegrated (k_t -dependent) gluon densities

I. Katkov

J/ψ at HERA

- Search for signatures of CO, test possible alternatives \Rightarrow e.g. k_t -factorization
- Backgrounds for inelastic J/ψ production measurement:
 - \rightarrow diffractive production (subtracted)
 - \rightarrow decays of beauty (small, not subtracted)
 - \rightarrow decays of $\psi(2S)$ (~15% in photoproduction, to be discussed)

Inelastic photo- and electroproduction of charmonium

Kinematic ranges and signals

- Signal measured in photoproduction data $(Q^2 \sim 0 \text{ GeV}^2)$:
 - \rightarrow Integrated lumi $\mathcal{L} = 38 \, \mathrm{pb^{-1}}$
 - \rightarrow 0.1 < z < 0.9
 - $50 < W < 180 \, \mathrm{GeV}$
- Signal measured in electroproductiondata:
 - \rightarrow Integrated lumi $\mathcal{L} = 73.3 \, \text{pb}^{-1}$
 - → $2 < Q^2 < 80 \text{ GeV}^2$ 50 < W < 250 GeV 0.2 < z < 0.9 $-1.6 < Y_{\text{lab}} < 1.3$
- Advantages of electroproduction:
 - \rightarrow diffractive processes suppressed
 - \rightarrow resolved-photon processes suppressed
 - \rightarrow reduced uncertainties of perturbative calculations

Photoproduction: theoretical models

- Three types of calculations: NLO CS, LO CS, LO NRQCD
- NLO CS calculation by Krämer et al. (KZSZ (NLO, CS)):
 - \rightarrow the only NLO available for J/ψ production!
 - \rightarrow only direct processes, no resolved
 - → MRST01, 1.3 < m_c < 1.6 GeV, $\mu = m_c/\sqrt{2} \; (\max(m_c/\sqrt{2}, \sqrt{m_c^2 + p_T^2}/2) \; \text{for} \; p_T^2 \; \text{distribution})$
- LO CS calculation by Krämer et al. (KZSZ (LO, CS)):
 - \rightarrow both direct and resolved processes included
 - \rightarrow GRV94 LO (proton), GRV LO (photon),

 $\Lambda_{\rm QCD} = 200 \, {\rm MeV}, \ \mu = 2m_c, \ m_c = 1.5 \, {\rm GeV}$

- BKV (LO, CS): extension of the previous calculation to helicity distributions
- Calculations of helicity distibutions within CSM and k_t -factorization by Baranov with two different choices of unintegrated gluon density

Photoproduction: theoretical models

- KZSZ (LO, CS+CO) and BKV (LO, CS+CO):
 - \rightarrow both direct and resolved contributions for CS and CO
 - \rightarrow LDMEs extracted from $p\bar{p}$ data \Rightarrow main uncertainty
- NRQCD calculation by Kniehl and Kramer: (KK (LO, CS+CO)):
 - \rightarrow both direct and resolved contributions for CS and CO
 - \rightarrow improved procedure (higher-order effects) to extract LDMEs from $p\bar{p}$ data
 - \rightarrow CTEQ4LO (proton), GRV LO (photon), $\Lambda_{QCD}^{(4)} = 296$ MeV, $\mu = \sqrt{4m_c^2 + p_T^2}$

• LO calculation by M. Beneke, G.A. Schuler and S. Wolf within NRQCD (BSW (LO, CS+CO)):

- \rightarrow no resolved contributions
- \rightarrow soft gluon emission resummed at high z (A : 300–500 MeV)
- \rightarrow LDMEs extracted from *B* decays

I. Katkov

Inelastic photo- and electroproduction of charmonium

7

Photoproduction: p_T^2 and W

- LO CSM prediction fails to describe high p_T production
- NLO corrections are needed to describe high p_T production of J/ψ (large theoretical uncertainties)

Photoproduction: inelasticity

- NLO CSM agrees with data
- Left plot: NRQCD describes shapes (large LDMEs uncertainties), KK (LO, CS+CO) needs k-factor
- Right plot: damping at high z for BSW (LO, CS+CO) \Rightarrow better agreement

Electroproduction: theoretical models

• NRQCD calculations by Kniehl and Zwirner (KZ (CS+CO), KZ(CS)): \rightarrow default parameters: $m_c = 1.5 \text{ GeV}$, MRST98LO ($\Lambda^{(4)} = 174 \text{ MeV}$),

$$\mu = \sqrt{Q^2 + M_{\psi}^2}$$

- \rightarrow uncertainties (added in quadrature): 1.4 < m_c < 1.6 GeV, CTEQ5L, factorization scale variation, LDMEs
- CSM calculations by Lipatov and Zotov:
 - → LZ (kt, CS) (k_t -factorization): $m_c = 1.55 \text{ GeV}$, JB unintegrated gluon density (at pomeron intercept value $\bar{\Delta} = 0.35$, uncertainty: 0.20 $<\bar{\Delta}<0.53$), $\Lambda_{\text{QCD}} = 250 \text{ MeV}$, $\mu^2 = q_T^2 (q_T^2 - \text{virtuality of initial BFKL gluon})$, gluon transverse momentum cut-off $Q_0^2 = 1 \text{ GeV}^2$
 - → LZ (CS) (collinear calculations): $m_c = 1.55$ GeV, GRV(LO), $\Lambda_{\rm QCD} = 250$ MeV, $\mu^2 = p_T^2 + M_\psi^2$

Electroproduction: Q^2 and W

- KZ(CS) and LZ(CS): lower but consistent with data
- KZ(CS+CO): mostly overshoots data
- LZ(kt, CS): agrees with data

DIS 2003, ST. PETERSBURG, 23–27 APRIL 2003

Electroproduction: inelasticity

• KZ(CS+CO): too high at large z values (high-z resummation needed?)

• CS predictions are consistent with data

Electroproduction: p_T^2 and p_T^{*2}

- KZ(CS) and LZ(CS): too soft in comparison to data
- KZ(CS+CO): overshoots data at low p_T^* values
- LZ(kt, CS): also too soft (NLO corrections?)

Electroproduction: rapidity

• LZ(kt, CS) tends to be above data in photon direction

Photoproduction: helicity

ZEUS

- $dN/d\cos\theta^* \propto 1 + \alpha\cos^2\theta^*$
- BKV collinear calculations
- Baranov k_t -factorization

• Statistics is yet not enough to discriminate between models

Summary

Photoproduction:

- NLO corrections enable one to describe high p_T production of J/ψ within CSM
- theoretical uncertainties are large: CO contributions cannot be excluded

Electroproduction:

- LO CS: below but consistent with data except high p_T range (NLO corrections?)
- NRQCD (CS+CO): too high at large z and small p_T^* values
- k_t -factorization (CS): agrees with data except at high p_T^* (too low) and in photon direction (too high)

Photoproduction: rapidity

- As in case of z k-factor is needed
- Shape is reasonably reproduced