New Trends in High-Energy Physics, Alushta 2003

Heavy Flavour Production at HERA

Karin Daum University of Wuppertal

Introduction, Theoretical Framework

- Charm Tagging, Fragmentation
- Charm (+jets) in DIS
- Charm (+jets) in Photoproduction
- Beauty Tagging
- \bullet Beauty (+jets) in DIS and γ p
- $D^* \mu$ Correlations

Proton structure $\otimes \sigma_{\gamma q \to Q ar Q} \otimes$ photon structure \otimes fragmentation function

Introduction - Strong Interaction

Proton structure $\otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function

• HEAVY FLAVOUR PRODUCTION AS A TEST OF HARD QCD

Proton structure $\otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function

Universality of the gluon density

Introduction - Proton Structure

Proton structure $\otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function

 \blacktriangleleft Large charm contribution to F_2

infinite momentum frame

Proton structure $\otimes \sigma_{\gamma q o Q ar{Q}} \otimes$ photon structure \otimes fragmentation function

Rigorously valid only at large x

Proton structure $\otimes \sigma_{\gamma g o Q ar{Q}} \otimes$ photon structure \otimes fragmentation function

 \blacktriangleleft Valid for all x, but incomplete

Proton structure $\otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function

• Large resolved component in γp (details later)

- non-perturbative effect in strong interactions
- described phenomenologically

Questions to Charm Fragmentation

- Fragmentation probabilities for different Hadrons with charm?
- Isospin conserved ?
- Ratio of vector (*D**) to pseudoscalar (*D*) mesons?
- Strangeness suppression?
- Fragmentation function?

Proton structure $\otimes \sigma_{\gamma g \to Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function

Is fragmentation universal?

Introduction - Theory and Models

 $\sigma_{\gamma p} \sim f^p \otimes \hat{\sigma} \otimes f^\gamma \otimes \mathcal{D}(z)$

Calculations in the DGLAP scheme

pQCD calculations in NLO

fixed order, **massive scheme**:

HQ produced dynamically;

 $p_t \lesssim m_q$

- γp: FMNR (Frixione et al.)
- **DIS:** HVQDIS (Harris & Smith)

Resummed calculations in NLL

all orders, massless scheme: HQ in γ or p; $p_t \gg m_q$

• Cacciari et al., Kniehl et al.,...

'Matched' scheme FONLL

fixed order + NLL scheme incorporate mass effects up to NLO, avoid double counting

• Cacciari et al.

MC generators (ME + PS)

• AROMA:

direct only, LO DGLAP evolution

• PYTHIA, RAPGAP, HERWIG: direct + resolved,LO DGLAP

• CASCADE:

direct only, **CCFM evolution**, initial state: **full calculation** final state: **LO** k_t dependent gluon density

Fragmentation:

non perturbative models

Introduction - A Challenge

- Heavy flavour production at HERA is a multi-parameter problem
- Additional uncertainties due to
 - heavy quark masses m_c and m_b
 - renormalization and factorization scale
- Charm production is a significant part of the *ep* cross section
- Understanding of charm production is partly limiting the accuracy in other physic topics (e.g. F_2)

Proton structure $\otimes \sigma_{\gamma q \rightarrow Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function

Detailed study of heavy favour production needed !

CHARM Tagging Methods

Tagging via reconstruction of hadrons with charm

Gold plated channel:

$$D^{*\pm} \to D^0 \pi^{\pm}_{sl}$$
$$\downarrow K^{\mp} \pi^{\pm}$$

• 2-body decays

•
$$m_{D^{*\pm}} - m_{D^0} = 145.4 \text{MeV}$$

close to m_π

 \Rightarrow small background

BUT: tagging rate: ≈ 0.006

 \rightarrow try to reconstruct other decay modes and other hadrons with charm

CHARM Tagging Methods

Charm Fragmentation Parameters

ZEUS: reconstruct all charm ground states, D^{\pm} , D^{0} , D_{s}^{\pm} , Λ_{c}^{\pm} and $D^{*\pm}$ ~ 66 or 79 pb⁻¹ Determine from data:

$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{c} { m Combined} \ e^+e^- { m data} \end{array}$	H1 prel. (DIS)
$f(c ightarrow D^+) = 0.249 \pm 0.014^{+0.004}_{-0.008}$	$0.232{\pm}0.010$	$0.202{\pm}0.020^{+0.045}_{-0.033}{}^{+0.029}_{-0.021}$
$f(c ightarrow D^0) = 0.557 \pm 0.019^{+0.005}_{-0.013}$	$0.549 {\pm} 0.023$	$0.658 {\pm} 0.054 {}^{+0.115}_{-0.148} {}^{+0.086}_{-0.048}$
$f(c ightarrow D_s^+) = 0.107 \pm 0.009 \pm 0.005$	$0.101 {\pm} 0.009$	$0.156{\pm}0.043^{+0.036}_{-0.035}{}^{+0.050}_{-0.046}$
$f(c ightarrow \Lambda_c^+) = 0.076 \pm 0.020^{+0.017}_{-0.001}$	0.076 ± 0.007	
$f(c ightarrow D^{*+}) = 0.223 \pm 0.009^{+0.003}_{-0.005}$	$0.235{\pm}0.007$	$0.263{\pm}0.019^{+0.056}_{-0.042}{}^{+0.031}_{-0.022}$

charm fragmentation fractions are universal

 \rightarrow HERA errors competitive!

 $R_{u/d}$, γ_s , V/(P+V) also determined and in good agreement with w.a.

Measurement of the Fragmentation Function into $D^{*\pm}$

Results on Fragmentation Function

D^* in DIS

H1: Inclusive $D^{*\pm}$ Cross Section 1999,2000 47 pb⁻¹

 $Q^2 > 2 \,\,\, {
m GeV^2}; \, 0.05 < y < 0.7$ $p_T^{D^*} > 1.5 \,\, {
m GeV}; \, |\eta^{D^*}| < \!\! 1.5$

Jet Cross Section with D^* in DIS

Jet Cross Section with D^* in DIS

D^* Photoproduction

 η distribution in $p_T^{D^*}$ bins

 \bullet NLO below data at medium $p_T^{D^*}$ and high η

 \bullet FONLL close to data only at low $p_T^{D^\ast}$

D^* + Two-Jet-Events

D^* + Two-Jet-Events

Charm: Di-jet Angular Distributions (LO Picture)

LO Picture: • Strong rise in $d\sigma/d\cos\theta^*$ towards γ direction for $x_{\gamma}^{obs} < 0.75$

• Clear evidence for charm from the photon

Charm: Di-jet Angular Distributions (Evolution Scheme)

- Fragmentation Probabilities and Fragmentation Function measured agrees with results from other experiments (with some reservations)
- Charm fragmentation universal in high energy physics?
- Inclusive D* production in DIS
 CASCADE: good agreement with data, other models fail
- D^* plus jets in DIS Problems of all models in describing $\sigma(D^{*\pm} + jj)$ vs. $\sigma(D^{*\pm})$
- Inclusive D* in photoproduction
 Problems of NLO QCD and CCFM to describe the data
- D* plus jets in photoproduction
 Sign of a large charm component in the photon in the LO+PS picture
 Sign of the off-shellness of partons in QCD calculations?

A good step forward, but still far from understanding charm production

Beauty Tagging Methods

B in γp : 1996–2000 Results

Beauty in DIS

 $Q^2>2~{
m GeV}^2$, 0.05 < y < 0.7 \sim 60 p 1 muon, $p_T^\mu>2~{
m GeV}$ 1 jet: $E_T^{Breit}>6~{
m GeV}$

$$\sigma^{\text{vis}} = (38.7 \pm 7.7^{+6.1}_{-5.0}) \text{ pb}$$

- QCD NLO (DGLAP) ok within errors NLO (Harris et al): $\sigma^{\text{vis}} = (28^{+5.3}_{-3.5})$
- CASCADE (CCFM) good agreemen $\sigma^{\rm vis} pprox$ 35pb
- RAPGAP (DGLAP, LO+PS) too low

$D^*\mu$ – Correlations

Present results show:

Data/QCD~ 2 for $b\overline{b}$ production Independent of method (p_T^{rel} , δ , $D^* \mu$) and independent of experiment (H1 or ZEUS)

Differential analyses have given new insights: Excess is not localised in a specific corner of phase space, e.g. in p_T , η or x_{γ}^{obs}

Reminder: Beauty production is considered to be more safe in terms of theory

A good step forward, but still far from understanding beauty production

Summary

Proton structure $\otimes \sigma_{\gamma g o Q ar Q} \otimes$ photon structure \otimes fragmentation function

Summary

 High statistics charm and beauty production data are used for detailed studies on the production mechanism

Proton structure $\otimes \sigma_{\gamma g \rightarrow Q \bar{Q}} \otimes$ photon structure \otimes fragmentation functionResults: \uparrow here \uparrow here \uparrow here \uparrow here

Summary

- High statistics charm and beauty production data are used for detailed studies on the production mechanism
- The question of the heavy quark masses has not been addressed yet experimentally
- More to come from final HERA-I data and even more insight from HERA-II
- None of the models describes all aspects
- None of the QCD calculations describes all aspects
 - Precision of data much better than theoretical uncertainties

Proton structure $\otimes \sigma_{\gamma g \rightarrow Q \bar{Q}} \otimes$ photon structure \otimes fragmentation function Results: $\uparrow \uparrow$ here $\uparrow \uparrow \uparrow$ here $\uparrow \uparrow$ here $\uparrow \uparrow$ here \checkmark More theoretical effort needed !

Overview: Beauty-Production: The World

