Physics at HERA III - experimental view

Daniel Pitzl, DESY

CIPANP 2003

- $\bullet \ \overline{d} \overline{u}$
- Diffraction in eD
- Spectator tagging
- $\bullet~{\rm Low}~x$ and ${\rm F}_{\rm L}$
- A new collider experiment
- QCD radiation patterns
- *eA*
- Spin

\mathbf{F}_2 and α_S from HERA I

- Deep inelastic scattering in collider mode.
- $E_p = 920 \text{ GeV}$ (since 1998), $E_e = 27.6 \text{ GeV}$.
- HERA I e^+p luminosity: 105 pb⁻¹.
- Scaling violations well described by NLO DGLAP QCD analysis over 4 decades in x and Q^2 .
- $\alpha_{\rm S}(M_Z^2) = 0.1150 \pm 0.0017 \,({\rm exp.}) \,{}^{+0.0009}_{-0.0005} \,({\rm model}) \pm 0.005 \,({\rm scale})$
- NNLO calculation underway.

D. Pitzl, DESY. CIPANP 2003

Parton density extraction

- Parameterization of parton densities at a starting scale $Q_0^2 = 4 \,\mathrm{GeV^2}.$
- 10 parameters determined from fit to F₂ in NLO:

$$F_2^{\text{e.m.}} = \frac{4}{9}x(U + \overline{U}) + \frac{1}{9}x(D + \overline{D})$$

U = u + c, etc

- Assuming $\overline{u} = \overline{d}$ at low x we reach at x = 0.01:
- 1% experimental accuracy for xU.
 2% for xD.

Unconstrained PDF extraction

• Extraction of parton densities without the constraint $x\overline{d} - x\overline{u} = 0$ at low x reduces the experimental accuracy to

• 6% for xU20% for xDat x = 0.01.

$\overline{d} - \overline{u}$ from fixed target experiments

• What happens at low x?

• Violation of the Gottfried sum rule

0.35

Measure $\overline{d} - \overline{u}$ in eD scattering

- Run HERA with 920 GeV deuterons.
- $F_2^d \approx F_2^p + F_2^n$ within shadowing corrections.
- $F_2^p = x \left(\frac{4}{9}u_v + \frac{1}{9}d_v + \frac{8}{9}\overline{u} + \frac{2}{9}\overline{d}\right)$ with $u_v = u - u_{\text{sea}}$ and $u_{\text{sea}} = \overline{u}$. and similar for F_2^n .
- Using local isospin invariance $d^n = u^p$ etc. we can form
- $\frac{1}{2}(F_2^p + F_2^n) F_2^p$ $= x\left(\frac{1}{6}(d_v u_v) + \frac{1}{3}(\overline{d} \overline{u})\right)$ $\approx \frac{1}{3}x\left(\overline{d} \overline{u}\right) \text{ at low } x.$

Simulation with 40 pb^{-1} of epand 20 pb^{-1} of eD:

Shaded: HERA I error band.

Valence quarks at large x from eD and ep

- Extract F_2^n from eD scattering by tagging the spectator proton.
- Reduce Fermi motion correction for en (6.5% spread in E_n) by measuring E_p with 1% resolution.
- Simulation for 50 pb⁻¹ eDand 50 pb⁻¹ ep at $E_p = 460$ GeV.
- at high x: $\frac{F_2^n}{F_2^p} \rightarrow \frac{1+4d_v/u_v}{4+d_v/u_v}$

2003/04/03 19.26

Diffraction

HERA I measurements and QCD analysis:

• Deep inelastic diffraction:

 Determine the partonic structure of the diffractive exchange.

Positive scaling violations up to large β .

Diffraction in eD

• *n*-diffraction, tag *p*:

• *D*-diffraction, tag *D*:

- Is the structure of neutron diffraction the same as that of proton diffraction?
- Is coherent diffraction off the deuteron the same as proton diffraction?
- Need p, n, and D tagging detectors.

Tagging at H1

- Diffractive deuteron measurement in Roman Pots at 220 m (VFPS). Existing.
- High acceptance around $x_{I\!\!P}$ of 0.02.
- Neutron tagging in a lead-scintillator sampling calorimeter with $\sigma_E/E = 64\%/\sqrt{E}$. Existing.
- Proton spectator tagging at z = 0.5 in several Roman Pot stations between 60 and 100 m with fiber detectors.
- Needs upgrade.

Neutron tagging

eD simulation: separate spectator and diffractive neutrons using $p_t^n\!\!:$

FNC p_t^n resolution is 12 MeV in a fine granularity preshower calorimeter. Beam spread at the IP adds 20 and 75 MeV in x and y in the HERA II optics. May be reduced at the cost of luminosity.

FNC acceptance is up to 90% with 0.2 mrad beam tilt at the IP:

Spectator proton tagging

- Want highest acceptance out to spectator proton p_T^2 of $0.1 \,\mathrm{GeV^2}$.
- Need wider beam pipe around 30 m and IP beam tilt to get up to 95%.
- Horizontal stations between 60 and 80 m.
- Vertical stations between 90 and 100 m.
- Exploit dispersion in beam optics for p_L measurement.
 Get 1% resolution with fiber detectors.

z = 0.5

Deuteron diffraction

- Measure coherent diffraction in eD.
- Compare to diffraction in *ep*, measured in the same detector (H1 VFPS) at HERA II.
- Expect a statistical accuracy of 1% at low |t|.

Shadowing

• Following Gribov, shadowing in *eD*...

• ...is related to diffraction:

- The Gribov theory can be tested in $eD \rightarrow eXp$ DIS by studying the predicted spectator p_t^p and E_p dependence of F_2^n/F_2^p .
- Using the QCD factorization theorem and a parameterization of the partonic structure for diffraction the shadowing corrections can be calculated with high precision.

Nuclear shadowing corrections

Q = 2, 5, 10 GeV.

- Shadowing corrections for F₂^d and the gluon density of the deuteron compared to the nucleon average.
- The correction amount to a few percent in deuterium.
- Effects up to 20% are predicted for *eO* and up to 50% for *ePb* at low *x*.

Rising F_2 at low x

- F_2 rises at low x like $x^{-\lambda}$
- Hadronic cms: $W^2 = Q^2/x$ at low x, so $F_2 \sim W^{2\lambda}$ at fixed Q^2 .
- λ is observed to rise with $\ln Q^2$.
- Around $Q^2 = 0.5 \,\text{GeV}^2 \,\lambda$ levels out around 0.1, similar to the energy dependence of hadron-hadron interaxtions.
- What physics governs this transition?
- Difficult acceptance region for H1 and ZEUS.

Physics at HERA III

H1 backward upgrade

- Remove lumi upgrade magnets.
- Install very backward
 - Silicon stripdetectors
 - MWPC
 - Pb-fibre spaghetti calorimeter.

• Acceptance: $0.1 < Q^2$ $10 \,\mathrm{GeV^2}.$

<

A new collider detector for HERA

- A compact large acceptance detector, see the talk by I. Abt.
- Q^2 range down to $0.1 \,{
 m GeV^2}$ covered.
- Geometric tracking coverage out to $\eta=5.5$
- In addition:
 - Forward hadron detector for diffraction.
 - n and p spectator taggers for eD. Luminosity detector.

Longitudinal structure function

• Neutral current DIS cross section:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[(1+(1-y)^2\,F_2 - y^2F_{\rm L}) \right]$$

- $F_{\rm L} > 0$ due to gluon radiation.
- Large NNLO corrections to $F_{\rm L}$ at low x and Q^2 .
- F_L is an independent observable to test the extraction of the gluon density from the F₂ analysis.

Measure F_L at low Q^2

- Separate F_L and F₂ at fixed x, Q²
 by varying the beam energy.
- $F_{\rm L}$ contributes most at high y, which means low energies for the scattered positron. Need good e/π separation against the photoproduction background.
- Expect several high precision $F_{\rm L}$ points at low Q^2 .
- At higher Q^2 this measurement is part of the HERA II program.

Simulation for the H1 backward upgrade assuming 5 pb⁻¹ each at $E_p = 920$, 500,and 400 GeV:

QCD radiation patterns

• At HERA:

Hard scattering products in the backward and central region with fragmentation like in e^+e^- .

Proton remnant fragmentation in the forward region like in pp.

- Universality of fragmentation can be tested.
- The region beyond $\eta=2.7$ is not explored.

H1 forward upgrade ideas

Forward jets

Approaches to parton radiation:

- DGLAP evolution with strict k_T ordering predicts small forward jet rates.
- CCFM and Color
 Dipole Model with
 features of BFKL
 evolution predict higher
 rates at large η.
- Multi-parton exchange is not fully included in any approach.

- The number of partons encountered by a projectile in a nucleus grows like A^{1/3} (6 for Pb).
- At high parton densities non-linear recombination effects are expected to limit the rise of F_2 .
- Leading twist nuclear shadowing theory predicts suppressions up to 50% in the x and Q^2 range accessible with eA at HERA.
- Does diffraction contribute 50% to the toal cross section?
- Requires beam cooling.

 $Q = 2, 5, 10 \, \text{GeV}$: $F_{2A}^{-1}/(AF_{2N}^{-1})$ **Pb-206** 0-16 0.9 0.8 0.8 0.7 0.7 0.0 0.6 0.5 0.5 g_A/(Ag_N) 1.4 Pb-206 0-16 1.2 0.8 0.0 0 (0.4 0.4 10 -3 10 -2 10⁻⁵ 10 -2 10 -3 10⁻⁵ 10⁻⁴ 10 -4

Х

Х

Spin

- Nucleon spin carried by quarks (only 15 to 20%), gluons, and angular momentum.
- Study with longitudinally polarized beams.
 - D has 25 times less and weaker depolarizing resonances than p.
- Measure asymmetry for opposite and parallel helicities. Expect about 1% at x = 0.001. Need large L and P.
- Extract quark spin contribution in g_1 .
- Gluon contribution accessible in dijet or charm production.

Summary: HERA III physics program

- 1. eD operation:
 - Measure d

 u
 with 2% accuracy at low x.
 - Measure d_v/u_v at high x.
 - Study n, p, and coherent D diffraction.
- 2. Return to ep with increased acceptance at low Q^2 and extended forward rapidity coverage:
 - Study the transition region from DIS to photoproduction around 0.5 GeV^2 .
 - Measure F_L at low Q^2 .
 - Study QCD radiation patterns in the forward direction.

- 3. eD and eA operation:
 - Study nuclear shadowing.
 - Search for QCD saturation effects at high parton densities.
 - Study diffraction in *eA*. Approach black-body limit?
- 4. Polarized *eD*:
 - Study the nucleon spin structure at low x and high Q^2 .
 - Study polarized photoproduction and diffraction.

Status

- A Letter of Intent for a new collider experiment at HERA focussing on low x, diffraction, and extended forward rapidity coverage was submitted to the May 2003 DESY PRC.
- A second Letter of Intent to measure *eD* scattering with H1 at HERA was submitted as well. It is supported by 156 physicists from 39 instituts.
- The physics case for these Lols was received favourably by the PRC.
- New collaborators are welcome to both Lols.

- A new 40 GeV p pre-accelerator and an e damping ring are required if PETRA is converted to a dedicated 3rd generation synchrotron light source.
- With a strong community and some external resources it may be possible to realize the HERA III program. Strong support by theorists has been expressed in a letter by Altarelli, Bjorken et al.
- Until then, the HERA II physics program aims for 1 fb^{-1} by 2007.