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• d − u

• Diffraction in eD

• Spectator tagging

• Low x and FL

• A new collider experiment

• QCD radiation patterns

• eA

• Spin



F2 and αS from HERA I

• Deep inelastic scattering in collider

mode.

• Ep = 920 GeV (since 1998),

Ee = 27.6 GeV.

• HERA I e+p luminosity: 105 pb−1.

• Scaling violations well described by

NLO DGLAP QCD analysis over 4

decades in x and Q2.

• αS(M
2
Z) = 0.1150 ±

0.0017 (exp.) +0.0009
−0.0005 (model) ±

0.005 (scale)

• NNLO calculation underway. 10
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Parton density extraction

• Parameterization of parton

densities at a starting scale

Q2
0 = 4 GeV2.

• 10 parameters determined

from fit to F2 in NLO:

F e.m.
2 =

4

9
x(U+U)+

1

9
x(D+D)

U = u + c, etc

• Assuming u = d at low x we

reach at x = 0.01:

• 1% experimental accuracy for

xU .

2% for xD.
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Unconstrained PDF extraction

• Extraction of parton densities

without the constraint

xd − xu = 0 at low x reduces

the experimental accuracy to

• 6% for xU

20% for xD

at x = 0.01.
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d − u from fixed target experiments

• Violation of the Gottfried sum rule

known since NMC 1991.

• Positive d−u from Drell-Yan in E866

(NuSea) measured for x > 0.03.

• Explanations include:

– Chiral soliton model.

– Meson cloud model

p → π+ n > p → π− ∆++

– Pauli blocking for the Dirac sea.

• What happens at low x?
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Measure d − u in eD scattering

• Run HERA with 920 GeV deuterons.

• F d
2 ≈ F p

2 + Fn
2

within shadowing corrections.

• F p
2 = x

(

4

9
uv + 1

9
dv + 8

9
u + 2

9
d
)

with uv = u − usea and usea = u.

and similar for F n
2 .

• Using local isospin invariance

dn = up etc. we can form

• 1

2
(F p

2 + Fn
2 ) − F p

2

= x
(

1

6
(dv − uv) + 1

3
(d − u)

)

≈ 1

3
x

(

d − u
)

at low x.

Simulation with 40 pb−1 of ep

and 20 pb−1 of eD:
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Valence quarks at large x from eD and ep

• Extract F n
2 from eD scattering by

tagging the spectator proton.

• Reduce Fermi motion correction for

en (6.5% spread in En) by measuring

Ep with 1% resolution.

• Simulation for 50 pb−1 eD

and 50 pb−1 ep at Ep = 460 GeV.

• at high x:
F n

2

F
p
2
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Diffraction

• Deep inelastic diffraction:

2

β

• Determine the partonic

structure of the diffractive

exchange.

HERA I measurements and QCD analysis:
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Diffraction in eD

• n-diffraction, tag p:

• D-diffraction, tag D:

• Is the structure of neutron diffraction

the same as that of proton diffraction?

• Is coherent diffraction off the deuteron

the same as proton diffraction?

• Need p, n, and D tagging detectors.
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Tagging at H1

• Diffractive deuteron measurement in

Roman Pots at 220 m (VFPS). Existing.

• High acceptance around xIP of 0.02.

• Neutron tagging in a lead-scintillator

sampling calorimeter with σE/E =

64%/
√

E. Existing.

• Proton spectator tagging at z = 0.5 in

several Roman Pot stations between 60

and 100 m with fiber detectors.

• Needs upgrade.

200 m 100 m

Proton spectator tagger

Forward
Neutron
Calorimeter

Deuteron
Tagger

IP
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Neutron tagging

eD simulation: separate spectator and
diffractive neutrons using pn

t :

pt
2/GeV2

dN
/d

p t2
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FNC pn
t resolution is 12 MeV in a fine

granularity preshower calorimeter.
Beam spread at the IP adds 20 and 75 MeV
in x and y in the HERA II optics.
May be reduced at the cost of luminosity.

FNC acceptance is up to 90% with 0.2mrad
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Spectator proton tagging

• Want highest acceptance out to

spectator proton p2
T of 0.1GeV2.

• Need wider beam pipe around 30 m

and IP beam tilt to get up to 95%.

• Horizontal stations between 60 and

80 m.

• Vertical stations between 90 and

100 m.

• Exploit dispersion in beam optics for

pL measurement.

Get 1% resolution with fiber

detectors.
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Deuteron diffraction

• Measure coherent diffraction in eD.

• Compare to diffraction in ep,

measured in the same detector

(H1 VFPS) at HERA II.

• Expect a statistical accuracy of 1%

at low |t|.

Simulation:
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Shadowing

• Following Gribov, shadowing in eD...

• ...is related to diffraction:

• The Gribov theory can be tested in

eD → eXp DIS by studying the predicted

spectator pp
t and Ep dependence of F n

2 /F p
2 .

• Using the QCD factorization theorem and a

parameterization of the partonic structure

for diffraction the shadowing corrections

can be calculated with high precision.
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Nuclear shadowing corrections

• Shadowing corrections for F d
2 and

the gluon density of the deuteron

compared to the nucleon average.

• The correction amount to a few

percent in deuterium.

• Effects up to 20% are predicted

for eO and up to 50% for ePb at

low x.

Q = 2, 5, 10 GeV.
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Rising F2 at low x

• F2 rises at low x like x−λ

• Hadronic cms:

W 2 = Q2/x at low x, so

F2 ∼ W 2λ at fixed Q2.

• λ is observed to rise with ln Q2.

• Around Q2 = 0.5 GeV2 λ levels

out around 0.1, similar to the

energy dependence of hadron-hadron

interaxtions.

• What physics governs this transition?

• Difficult acceptance region for H1

and ZEUS.

HERA I results:
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H1 backward upgrade

• Remove lumi upgrade

magnets.

• Install very backward

– Silicon strip

detectors

– MWPC

– Pb-fibre spaghetti

calorimeter.

• Acceptance:

0.1 < Q2 <

10 GeV2.

cut out
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A new collider detector for HERA

• A compact large acceptance

detector, see the talk by I. Abt.

• Q2 range down to 0.1GeV2

covered.

• Geometric tracking coverage out

to η = 5.5

• In addition:

Forward hadron detector for

diffraction.

n and p spectator taggers for eD.

Luminosity detector. e

p

Silicon tracking stations

EM barrel calorimeter

EM catcher calorimeters

EM + hadron calorimeter

EM calorimeter

IP

-5 m

4.8 m

9 m dipole
magnet 0.3 T
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Longitudinal structure function

• Neutral current DIS cross section:

d2σ

dx dQ2
=

2πα2

xQ4

[

(1 + (1 − y)2 F2 − y2FL

]

• FL > 0 due to gluon radiation.

• Large NNLO corrections to FL at low x and

Q2.

• FL is an independent observable to test the

extraction of the gluon density from the F2

analysis.
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Measure FL at low Q2

• Separate FL and F2 at fixed x, Q2

by varying the beam energy.

• FL contributes most at high y,

which means low energies for

the scattered positron. Need

good e/π separation against the

photoproduction background.

• Expect several high precision FL

points at low Q2.

• At higher Q2 this measurement is

part of the HERA II program.

Simulation for the H1 backward upgrade assuming
5 pb−1 each at Ep = 920, 500,and 400 GeV:
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QCD radiation patterns

• At HERA:

Hard scattering products in the backward and central region with fragmentation

like in e+e−.

Proton remnant fragmentation in the forward region like in pp.

• Universality of fragmentation can be tested.

• The region beyond η = 2.7 is not explored.
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H1 forward upgrade ideas

instrumented beam pipe
rings with scintillating fibres
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Forward jets

Simulation:
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Approaches to parton

radiation:

• DGLAP evolution with

strict kT ordering

predicts small forward

jet rates.

• CCFM and Color

Dipole Model with

features of BFKL

evolution predict higher

rates at large η.

• Multi-parton exchange

is not fully included in

any approach.
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eA

• The number of partons encountered

by a projectile in a nucleus grows like

A1/3 (6 for Pb).

• At high parton densities non-linear

recombination effects are expected

to limit the rise of F2.

• Leading twist nuclear shadowing

theory predicts suppressions up to

50% in the x and Q2 range accessible

with eA at HERA.

• Does diffraction contribute 50% to

the toal cross section?

• Requires beam cooling.

Q = 2, 5, 10 GeV:
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Spin

• Nucleon spin carried by quarks (only

15 to 20%), gluons, and angular

momentum.

• Study with longitudinally polarized

beams.

D has 25 times less and weaker

depolarizing resonances than p.

• Measure asymmetry for opposite and

parallel helicities. Expect about 1%

at x = 0.001. Need large L and P.

• Extract quark spin contribution in g1.

• Gluon contribution accessible in di-

jet or charm production.
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Summary: HERA III physics program

1. eD operation:

• Measure d− u with 2% accuracy at
low x.

• Measure dv/uv at high x.
• Study n, p, and coherent D

diffraction.

2. Return to ep with increased
acceptance at low Q2 and extended
forward rapidity coverage:

• Study the transition region from
DIS to photoproduction around
0.5 GeV2.

• Measure FL at low Q2.
• Study QCD radiation patterns in the

forward direction.

3. eD and eA operation:

• Study nuclear shadowing.
• Search for QCD saturation effects

at high parton densities.
• Study diffraction in eA. Approach

black-body limit?

4. Polarized eD:

• Study the nucleon spin structure at
low x and high Q2.

• Study polarized photoproduction
and diffraction.
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Status

• A Letter of Intent for a new collider

experiment at HERA focussing on low

x, diffraction, and extended forward

rapidity coverage was submitted to the

May 2003 DESY PRC.

• A second Letter of Intent to measure

eD scattering with H1 at HERA was

submitted as well. It is supported by

156 physicists from 39 instituts.

• The physics case for these LoIs was

received favourably by the PRC.

• New collaborators are welcome to both

LoIs.

• A new 40 GeV p pre-accelerator and

an e damping ring are required if

PETRA is converted to a dedicated 3rd

generation synchrotron light source.

• With a strong community and some

external resources it may be possible to

realize the HERA III program. Strong

support by theorists has been expressed

in a letter by Altarelli, Bjorken et al.

• Until then, the HERA II physics

program aims for 1 fb−1 by 2007.
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