Highlights of HERA-I results

Carsten Niebuhr

DESY

Kinematic variables:

• $Q^2 = -(k - k')^2 = -q^2$ four momentum transfer squared

•
$$x = -\frac{q^2}{2P \cdot q}$$

momentum fraction of struck quark

•
$$y = \frac{q \cdot P}{k \cdot P}$$

 e^{\pm} energy fraction carried by γ : "inelasticity"

•
$$s = (k+P)^2 = \frac{Q^2}{x \cdot y}$$

ep center of mass energy squared

•
$$W^2 = (q+P)^2 = Q^2 \frac{(1-x)}{x} + m_p^2 = M_X^2$$

mass squared of $\gamma^* p$ system

Neutral Current

$$\begin{aligned} \frac{d^2 \sigma_{NC}^{e^{\pm}p}}{dx dQ^2} &= \frac{2\pi \alpha^2}{x} \quad \cdot \quad \frac{1}{Q^4} \quad \cdot \quad \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2)\right] \\ \tilde{F}_2 &\equiv F_2 - v_e \frac{\kappa_w Q^2}{Q^2 + M_Z^2} F_2^{\gamma Z} + (v_e^2 + a_e^2) \left(\frac{\kappa_w Q^2}{Q^2 + M_Z^2}\right)^2 F_2^Z \quad = x \sum_i A_i (q_i + \bar{q}_i) \\ x \tilde{F}_3 &\equiv \quad -a_e \frac{\kappa_w Q^2}{Q^2 + M_Z^2} x F_3^{\gamma Z} + (2v_e a_e) \left(\frac{\kappa_w Q^2}{Q^2 + M_Z^2}\right)^2 x F_3^Z \quad = x \sum_i B_i (q_i - \bar{q}_i) \end{aligned}$$

Charged Current

 $Y_{\pm} = (1 \pm (1 - y)^2)$

$$\frac{d^2 \sigma_{CC}^{e^{\pm}p}}{dx dQ^2} = \frac{G_F^2}{2\pi x} \cdot \frac{M_W^4}{(Q^2 + M_W^2)^2} \cdot \phi_{CC}^{\pm}(x, Q^2)$$
$$\phi_{CC}^{+} = x[(\bar{u} + \bar{c}) + (1 - y)^2(d + s)]$$
$$\phi_{CC}^{-} = x[(u + c) + (1 - y)^2(\bar{d} + \bar{s})]$$

Kinematic Reach of HERA

The Detectors: H1 and ZEUS

<image><image>

Neutral Current Event

Charged Current Event

	Calo	Nr. of Cells	σ _{θ,} (mrad)	$\frac{\sigma}{\sqrt{E}}$ (e)	$\frac{\sigma}{\sqrt{E}}$ (had)	$\frac{\Delta E}{E}$
Eus	Uran. Sc.	6000	3	18 %	35 %	1 - 3 %
	Liq. Ar	44000	2 - 5	12 %	50 %	1 - 3 %

Z R

1114

Rise of F_2

- first discovery at HERA
- strong rise at low x ($F_2 \sim x^{-\lambda}$)
- good agreement between H1 and ZEUS
- overlap with fixed target experiments
- high precision reached:
 ~1% (stat) ⊕ 2-3% (syst)

F₂ Scaling Violation

- H1 and ZEUS give consistent results
- positive and negative scaling violations clearly observed
- NLO QCD able to describe data over >4 orders of magnitude
- fit works even for Q² down to O(1 GeV)

Quark & Gluon Distributions from HERA

Universality of Gluon Determination at HERA

Charm contribution to F_2

- Boson Gluon Fusion process gives direct handle on the gluon density
- D* as charm tag
- measured F₂^C consistent with NLO fit to inclusive data
- substantial charm contribution at HERA:
- at small x and $Q^2 > 10 \text{ GeV}^2$ $F_2^C/F_2 \approx 0.3$

Longitudinal Structure Function F_L

NC and CC cross section $d\sigma/dQ^2$ for e⁺p and e⁻p

Extraction of $xF_3^{\gamma Z}$

- Interference between photon and Z exchange → difference in cross section between e⁺p and e⁻p NC at high Q²
- $x\tilde{F}_3 = \frac{1}{2Y_-} [\phi_{NC}^- \phi_{NC}^+]$ neglect pure Z exchange
 - \rightarrow extract $xF_3^{\gamma Z} \equiv xG_3$
- statistical errors large, dominated by small e⁻p statistics
- within errors good agreement with
 - fixed-target BCDMS data
 - QCD fits

xu and xd at high x from CC

Inclusive Jets in Photoproduction

Summary of α_s measurements at HERA I

Search for Leptoquarks: Resonances

No excess seen over SM expectation

Evaluate in Buchmüller-Rückl-Wyler model (β fixed to 0 / 0.5 / 1) and derive limits on λ vs M_{LQ}

Compare results with other experiments:

- Tevatron: pair production, independent of $\boldsymbol{\lambda}$
- LEP:

t-channel contribution to $e^+e^- \rightarrow$ hadrons, strong λ dependence

 $R_p = (-1)^{3B+L+2S}$ +1 for SM particles -1 for SUSY particles λ'_{1j1} LQ-like decays Gauge decays $e.\nu$ e $ilde{m{q}}$ $ilde{m{q}}$ \boldsymbol{q} q $e^{\pm},
u$

- R_p violation \Rightarrow SUSY particles can be singly produced & LSP not stable
- no excess seen in any channel \Rightarrow limits
- analysis in unconstrained MSSM free variation of parameter
- limits rather insensitive to these variations
- masses up to 270 GeV excluded for $\lambda' = 0.3$

180

160

200

220

M_{LSP} > 30 GeV imposed

H1 preliminary

240

260

M_{squark} (GeV)

280

-2

100

120

140

10

Other Searches

Many other analyses performed. No signal found and limits derived for several models beyond the SM

- Leptoquarks
- Lepton Flavour Violation
- R_P violating supersymmetric models
- Excited Fermions
- Contact Interaction, Compositeness, Large Extra Dimensions
- Anomalous top production and FCNC
- Search for Monopoles

Unexpected Events at HERA: Lepton & P_T^{miss}

Look also for events with isolated τ :

- ZEUS finds 2 candidates with p_T^x > 25 GeV ; SM expectation : 0.12 ± 0.02
- H1 analysis ongoing, no results yet

electron + muon channel

	H1		ZEUS		
P _T ^X cut	Data	SM	Data	SM	
0	18	12.4 ± 1.7	36	32.6 ± 3.8	
25	10	2.9 ± 0.5	7	5.7 ± 0.6	
40	6	1.1 ± 0.2	0	1.9 ± 0.2	

tau channel

	ZEUS (prel.)			
P _T ^X cut	Data	SM		
0	_	_		
25	2	0.12 ± 0.02		
40	1	0.06 ± 0.01		

- electron and muon channel:
 - H1 sees excess
 - ZEUS agrees with SM expectation
- tau channel
 - ZEUS sees excess
 - H1 no results yet

For $p_T^X > 25 GeV$:

- in total 19 events seen in data (e+μ+τ, H1+ZEUS)
- SM expectation is 8.8 events
 - \Rightarrow overall probability P = 0.44%
- no firm conclusion possible now
- need HERA II data (1fb⁻¹)

Search for single Top Production

- can anomalous single top production explain excess of isolated lepton events?
- SM rate negligible due to FCNC vertex
- dedicated top search by ZEUS and H1
 - semileptonic and
 - hadronic channel
- no excess over SM \Rightarrow stringent limits on anomalous magnetic coupling $\kappa_{tu\gamma}$

Another Puzzle: Multi-Lepton Events at HERA

+ electroweak diagrams

Two isolated electrons with $E_T > 10 \text{ GeV}$

- H1 $20^{\circ} < \theta_{e} < 150^{\circ}$
- ZEUS $17^{\circ} < \theta_e < 164^{\circ}$
- both allow for third electron in: 5° < θ_{e} < 175^{\circ}

Preliminary Results for 2e, 3e and 2µ

Multielectrons: $M_{12} > 100 \text{ GeV} [E_{T,1} > 30 \text{ GeV} (ZEUS 3e)]$

		H1	ZEUS		
	Data	SM	Data	SM	
2 e [±]	3	0.25 ± 0.05	2	0.8 ± 0.1	
3 e [±]	3	0.23 ± 0.04	2	1.4 ± 0.1	

Muon data do not show any excess \rightarrow not conclusive

• ZEUS (prel.) 94-00

NC+QEDC

OEDC

- GRAPE+NC+OEDC

Summary and Conclusions

- High precision data emerging from HERA
 - SF measurements at the ~2% level
 - Jet production meas. at the ~5% level
 - gluon, α_s
- HERA has some windows for discoveries
 - LQ, Rp violating SUSY, excited fermions
 - some unexplained lepton events
- Many aspects not covered in this talk
 - Diffraction, Vector Mesons
 - Charm & Beauty production
 - Photon structure
 - small x, novel parton dynamics
 - DVCS
 - Instantons
 - ...

- HERA II
 - higher luminosity $\rightarrow 1 \text{ fb}^{-1}$
 - longitudinally polarised e[±] beam

Talk by R. Yoshida

Further extentions of physics programme being discussed:

- HERA III
 - Deuterons in HERA
 - A>2
 - Spin
- Talks by D.Pitzl (Physics) and I.Abt (Mach.&Det.)

Talk by I.Gialas