The New Object Oriented

Analysis Framework For H1

Matti Peez for the H1-Collaboration CHEP 03 - 27 march 2003 - La Jolla

- Motivation and constraints
- Storage model
- Data access
- Analyses
- Event display
- Summary

• H1 one of 4 experiments at the *ep* collider HERA (Desy, Hamburg)

- Data taking since 1992: Analysis done using fortran based environment with hbook, fpack, BOS and PAW
- 2000-2002 Upgrade of accelerator and detector
 → Good opportunity for software upgrade

- Create unique and extendable analysis environment
 - One common tool for data storage, user analysis and physics algorithm
 - Unification of code
 - Establish a common particle concept
 - Centralize expert knowledge
 - Use of H1 expert knowledge for physics algorithm
 - Easy navigation over increasing amount of data & fast event selection

 → especially partial event reading

Constraints:

- Time constraint: H1 is running experiment
- Be able to read previous data format
- Keep possibility of using established fortran code

H1 OO: The Project

- 45 packages (managed with *CVS*)
- \approx 500 classes
- 13 librarians
- 5 physics working groups involved

Relation between fortran and OO environment

CHEP 03 - 27/03/03

Matti Peez

Storage Model: (3 + 1) layer structure

- ODS (Object Data Store): 13 kb/evt
 - Tracks, calorimeter clusters, detector information
 - 1-1 correspondence with former DST
 - ODS objects created in memory "on demand" (ODS on the fly)

$\mu ODS (\mu Object \ Data \ Store)$: 3 kb/evt

- 4Π coverage of detector (no double counted energy)
- 4-vectors of identified particles + associated detector information

 → ready to use for physics analysis

HAT (H1 Analysis Tag): 0.4 kb/evt

- Detector status, kinematics ...
- UserTree: user specific info

 \Rightarrow Provides a common environment and high flexibility for both H1 and user data

- No storage of duplicated information: only DST
 → Allow still fortran compatibility
- Only requested types of objects are converted (transparent for the user)
- Dynamic loading of FPACK + BOS libraries
- Fast transient data access: only small performance loss in comparison to access persistent ods

Particle candidates:

- Particle 4-vector
- Pointers to reconstructed-level tracks and clusters (ODS) & identified particles (μ ODS)

Identified/Composed Particle Lists:

- Particle kinematics & Detector information (for each particle type)
- Pointers to specific, selected particle candidates
- \Rightarrow Provides a quick and easy navigation over particles
- \Rightarrow New particle lists could easely be integrated

H1Skeleton:

fully encapsulated data access

H1Skeleton provides user with 2 main classes: H1Tree and H1Pointer

H1Tree regroups parallel ROOT trees into conceptually one (user transparent):

- Takes care of file handling (3 layers + user tree)
- Only one event loop over all layers needed
- Equal access for all layers
- Selection of events through *H*1*EventList*

H1Pointer as extension of ROOT reference lists for all layers:

• Access to partial event information across different layers possible

 \Rightarrow Allows easy navigation over data and event delivery according to individual user selection

H1EventList: user selection of events

Contents:

- Selection string (if any)
- Runrange of events
- Name of files associated to
- Type of tree associated to (e.g. μ ODS)

Characteristics:

- Cumulative selections possible (e.g. preselection + final selection)
- Event (pre-)selection on each layer possible
- No need to know location of data
- Allow subsamples of events without duplication of ROOT files on disk

Physics finders

Input: ODS information (no fortran code involved)

Since 2000:

- Development and validation of finders (electron, muon, jet finder etc...)
- Integration of calibration and alignment
- \Rightarrow Same performance level as previous fortran code \Rightarrow Fully tested in:
 - Event by event comparison
 - Validation in present analyses

Analyses

- Ongoing analyses with HERA I data
- All physics working groups involved
- Lower learning threshold for newcomers
- Reduced turn-around for physics analysis job
- Great profit from analyses:
 - Validation of physics algorithm in different phase space regions
 - New usefull variables/algorithms integrated

HERA II data:

- Used for online production
- Used for data quality checks

Comparison OO - Fortran for NC selection

Example of composed particle: J/Psi

CHEP 03 - 27/03/03

Matti Peez

Event display

- Completely integrated in analysis framework
- Modern GUI (graphics)
- Software fully compatible with previous H1 display
 - \hookrightarrow accepts commands of previous command-line based event display
- Can display:
 - Data in ROOT and BOS format
 - Reconstructed particles and event information
 - Detector hit information

Event display for a typical H1 event

$\mathsf{FORTRAN} \to \mathsf{C\text{++}SUCCESSFUL}\ \mathsf{MIGRATION}$

Key points are:

- Technical performance and enhanced capabilities of new framework
- Quality of physics algorithms (improvements still ongoing)

The goals for an improved analysis framework have been achieved

It has become a standard tool for H1 physics analysis