Review of Inclusive Diffraction: New Results from HERA

Date : June 23 - 28 2003

Xth Blois Workshop on Elastic and Diffractive Scattering, Helsinki

Günter Wolf (DESY)

- Introduction
- DIS $F_2^{D(3)}(x_{I\!\!P},\beta,Q^2)$ and t dependence diffraction with ZEUS leading proton spectrometer:
- new data at low and very high Q^2 DIS diffraction from H1: new QCD fit, diffractive parton distributions
- **DIS diffraction from ZEUS with Forward Plug Calorimeter**
- Summary

٦

 Q_2

 βx_{lp}

•
$$Q^2 = -q^2 = -(k - k')^2$$

• $x = \frac{Q^2}{2q \cdot p}$
• $W = \sqrt{(p+q)^2} \approx \sqrt{\frac{Q^2}{x}}$
• $M_X^2 = (k - k' + p - p')^2$
 $(p - p') \cdot q \quad M_X^2 + Q^2$

 \mathcal{Q}^2

90 m

Capiaiti

hadrons

Ľ

ω

ZEUS measurement of $\mathrm{x}_{\mathbb{P}}\mathrm{F}_{2}^{\mathcal{D}(\mathcal{O})}(\mathrm{x}_{\mathbb{P}},eta,\mathrm{Q}^{2})$ with LPS

Fit all data of $(x_{I\!P} < 0.01)$ with common Pomeron flux factor $x_{pom}F_2^{D(3)}(x_{I\!P},\beta,Q^2) =$ $(1/x_{I\!P})^{2\alpha_{I\!P}(0)-1} \cdot F_2^{I\!P}(\beta,Q^2)$

 $\begin{aligned} &\alpha_{IP}(0) = 1.173 \pm 0.018(stat) \\ &\pm 0.017(sys) \pm^{(+0.063)}_{(-0.035)} \text{ (model)} \end{aligned}$

Measurement of $\alpha_{I\!P}(0)$ from t-dependencewith LPS

Fit t distribution to $d\sigma/d|t| \propto exp(-b|t|)$ expect shrinkage of diffractive peak (Regge):

$$b = b_0 + 2\alpha' \ln(1/x_{IP})$$

b should rise as $x_{I\!P}
ightarrow 0$

data note yet definitive

Measurement of $lpha_{I\!P}(0)$ from t-dependencewith LPS

line shows expected behaviour

or
$$b_0=5~{
m GeV}^{-2}$$
 and $lpha'=0.25~{
m GeV}^{-2}$

Xth Blois Workshop on Elastic and Diffractive Scattering 23 - 28 June 2003 Helsinki, Finland

Günter Wolf

H1 measurement of $x_{\mathbb{P}}F_2^{\mathcal{D}(3)}(x_{\mathbb{P}},\beta,Q^2)$ and QCD fit

$$\sigma_r^{D(3)} = F_2^{D(3)}(x_{I\!P},\beta,Q^2)$$

diffractive structure function of the proton

- new data for $1.5 < Q^2 < 12 \ {\rm GeV}^2$ and $130 < Q^2 < 1600 \,{
 m GeV}^2$
- New QCD fit to $F_2^{D(3)}(x_{I\!P},\beta,Q^2)$ light quark flavour singlet: assume PDF's independent of x_{IP} use data with $6 < Q^2 < 120 \, {\rm GeV}^2$ Pomeron modelled in terms of $\sum_{z} (z) = u(z) + d(z) + s(z) + u(z) + \dots$

plus gluon distribution:

g(z)

factorize diff. structure funct. of proton into proton momentum probability finding Pomeron with fract $x_{I\!P}$ of

and structure function of the Pomeron: $f_{IP}(x_{pom}) \cdot F_2^{D(2)}(\beta, Q^2)$ $F_2^{D(3)}(x_{I\!P},\beta,Q^2) =$

note

$$\sigma_r^{D(3)} / f_{I\!P}(x_{I\!P}) = F_2^{D(2)}(x_{I\!P}, Q^2)$$

red band shows result of $F_2^{D(3)}(x_{I\!P},\beta,Q^2)$ QCD fit đ

inner error bands:

outer error bands: experimental stat + syst errors

assumptions include uncertainties from theoretical

- $75\pm15\%$ of Pomeron momentum with the rest by quarks 0.01 < z < 1 is carried by gluons.
- large uncertainty on $g(z,Q^2)$ at large z

H1 QCD fit compared with $x_{\mathbb{P}}F_2^{D(3)}(x_{\mathbb{P}},\beta,Q^2)$ data including low and h x_{IP} = 0.01 H1 preliminary

- New QCD fit to $F_2^{D(3)}(x_{I\!P},\beta,Q^2)$ fit used data with $6 < Q^2 < 120 \,{\rm GeV}^2$
- curves at $Q^2 < 6$ and $> 120 {\rm ~GeV}^2$ are extrapolations of QCD fit

Xth Blois Workshop on Elastic and Diffractive Scattering 23 - 28 June 2003 Helsinki, Finland

Günter Wolf

11

- slow rise with Q^2
- > as expected for leading twist
- strong rise as W o 0

rise accelerates as Q^2 increases reflects the rise of F_2 as $x \to 0$

• fit $\sigma^{tot} = c \cdot W^{a^{tot}}$ note $\alpha_{I\!P}(0) = 1 + a^{tot}/2$

. Fit
$$\frac{d\sigma^{diff}_{\gamma^*p\to XN}}{dM_X} = h \cdot W^{a^{diff}} \sim (W^2)^{(2\overline{\alpha_IP}-2)}$$
$$(h, a^{diff} \text{ free parameters})$$

$$\therefore \overline{lpha_{I\!P}} = 1 + a^{diff}/4$$

2. Compare with soft Pomeron from hadron-hadron scattering at t = 0:

$$\alpha_{IP}^{soft}(0) = 1.096^{+0.012}_{-0.009}$$
 $\therefore a^{soft} = 0.302^{+0.048}_{-0.036}$
corrected by 0.02(= $\delta \alpha_t$) for t distribution

3. For
$$M_X < 2 \text{ GeV}$$

 a^{diff} as expected for soft Pomeron

4. At higher
$$M_X$$

 a^{diff} higher than expected for soft Pomeron \rightarrow clear indication for rise with Q^2 .

Note : For $Q^2 > 10 \text{ GeV}^2$

Probability that $a^{diff} = a^{soft}$ is < 0.001

 \implies Strong indication for pQCD

 $\int_{M_a}^{M_b} dM_X d\sigma^{diff}_{\gamma^*p^-}$ $\underline{\gamma^* p \rightarrow X}N, M_N < 2.3 GeV / dM_X$ $\tau^{tot}_{\gamma^* p}$

- For $M_X < 2$ GeV, r_{tot}^{diff} is falling with W .
- For $M_X > 2$ GeV, r_{tot}^{diff} is constant with W. \implies The diffractive cross section has about the same W-dependence as σ^{tot} .
- The low M_X bins exhibit a strong decrease of r_{tot}^{diff} with increasing Q^2 .
- For $M_X > 8$ GeV, no Q^2 dependence is observed.

$$\sigma^{diff}_{(M_X < 35 \text{ GeV})} / \sigma^{tot} \text{ at } W = 220 \text{ GeV}:$$

= 19.8^{+1.5}_{-1.4}% (Q² = 2.7 GeV²)
= 10.1^{+0.6}_{-0.7}% (Q² = 27 GeV²)

 \Longrightarrow Slowly decreasing with Q^2

$$\mathcal{Q}^2 d\sigma^{diff}_{\gamma^*p o XN}/dM_X$$
 vs. M_X at $W=220~{
m GeV}$

- Rapid decrease with Q^2 for $M_X < 4$ GeV \implies predominantly higher twist.
- Constant or slow rise with Q^2 for $M_X > 10$ GeV \implies leading twist.

Xth Blois Workshop on Elastic and Diffractive Scattering 23 - 28 June 2003 Helsinki, Finland

BEKW(mod) fit does not reproduce the rise

of $F_2^{D(2)}$ as $\beta \to 0$

• replace $c_g \cdot F_{q\bar{q}g}^T$ by radiation term:

 c_{rad}

$$\begin{split} \cdot F_{rad} &= \\ (c_{rad} \cdot \frac{x_0}{x_{I\!P}})^{n^{xrad}(Q^2)} \\ \cdot [(1/\beta)^{n^{\beta rad}(Q^2)} - 1)] \cdot (1 - \beta)^{\gamma} \end{split}$$

from fit to the data

 $\gamma = 2.90 \pm 0.22$ $n^{\beta rad} = 0.018 \pm 0.003$ $n^{xrad} = 0.068 \pm 0.002$ $c_{rad} = 0.116 \pm 0.024$ $c_T = 0.113 \pm 0.001, c_L = 0.178 \pm 0.011$ $\chi^2/$ ndf = 144/196

data as $\beta \rightarrow 0$ and Q^2 increases \implies radiation term reproduces trend of the

Conclusion

- Data from ZEUS leading proton spectrometer are promising but the meashrinkage sured t dependence is not yet precise enough to measure lpha' and see
- gives good description of data from $Q^2=3.5$ to 400 GeV $^2.$ DIS diffraction from H1: QCD-type fit with PDF's for quarks and gluons gluons According to the fit, $75\pm15\%$ of the Pomeron momentum is carried by
- Results from ZEUS M_X analysis:

CD evolution in $x_{I\!P}$ and in $eta.$	active Scattering : Evidence for Q	\implies DIS diffr
Increasing with Q^2	Maximum at $eta \sim 0.5$, $I\!P = q ar q$	
Increasing as $eta ightarrow 0$	Decreasing with Q^2	$F_2^{D(2)}(\beta,Q^2)$
"sea region", $\beta < 0.1$	"valence region", $eta > 0.1$	
Rising as $x_{IP} \rightarrow 0$	Constant w.r.t. x_{IP}	$x_{IP}F_2^{D(3)}$
\implies Leading twist	\implies Higher twist	
Constant for $M_X > 10$ GeV	Decreasing with Q^2	$Q^2 d\sigma^{diff}/dM_X$
Weak Q^2 dependence for $M_X > 8$ GeV	Decreasing with Q^2 for $M_X < 8$ GeV	
Constant with W	Falling with W	r_{tot}^{diff}
and rising with Q^2		
For $Q^2 > 10 { m GeV}^2$, above soft pomeron	like soft pomeron	$lpha_{I\!P}(0)$
Rising with W	Constant with W	$d\sigma^{diff}/dM_X$
$M_X > 2 { m GeV}$	$M_X < 2 { m GeV}$	