

Review of Vector Mesons and DVCS

Xth Blois Workshop on Elastic and Diffractive Scattering

Uta Stösslein (DESY Hamburg)

Hanasaari, Helsinki, Finland, June 23rd - 27th, 2003

Xth Blois Workshop Uta Stösslein - Review of Vector Mesons and DVCS

Outline

Motivation

 Vector Mesons γp → VM p (Y), γ*p → VM p elastic photo- and electroproduction scale and universality tests dissociative photo- and electroproduction helicity studies

• Deeply Virtual Compton Scattering $\gamma^{\star}p \to \gamma\,p$ cross sections

asymmetries

Conclusions

Motivation

confinement of color: the most important open problem in QCD

- → still not possible to calculate bulk of hadronic processes by first principle if the reactions are *soft*, *i.e. distances and strong coupling are large:* σ_{tot} , $\sigma_{elastic}$ and σ_{diffr}
- \rightarrow at large distances confinement changes radically the pQCD radiation pattern
- → in high energy hadronic scattering hard diffraction deliver class of events where an initial hadron may stay confined → hope to learn about fundamental properties of binding forces

strategy

- Study the structure of hadronic interactions and identify here kinematic ranges where pQCD dominates: transition soft > hard
- \rightarrow explore asymptotic behavior of high energy interactions
- \rightarrow measure new non-perturbative structure of hadrons (GPDs)

HERA Experiments @ DESY

H1, ZEUS: $e^{\pm} \Rightarrow \Leftarrow p$ 27.5 GeV 920 GeV $\sqrt{s} = 320$ GeV

 \rightarrow high parton densities!

HERMES:

long. pol e[±] on internal gas target: H, D, He, N, Ne, Kr $\sqrt{s} = 7.5 \text{ GeV}$

 \rightarrow spin and A dep. quantities

→ powerful probes of QCD

Xth Blois Workshop

Experimentally: very clean processes in wide kinematic range

Q ²	γ^* virtuality	0 < Q ² < 100 (20) GeV ²
W _{vb}	c.m. energy of $\gamma^* p$ system	20 (4) < W _{γp} < 300 (7) GeV
† 'P	4-mom. transfer squared at p-vertex	0 < t < 20 (1) GeV ²
VM	Vector Meson	ρ ^ο , ω, φ, J/ψ , ψ', Υ

 \rightarrow simultaneous control of <u>different scales</u>: Q², |t|, M²_{VM}

Models for Diffractive VM Production

VDM:

photon (γ*) fluctuates into VM
 → VM retains γ* helicity (SCHC)

2. VM scatters off the incoming proton \rightarrow elastic photoproduction (Q² ~ 0) of light Vector Mesons (VM) is a soft process

Regge model (soft diffraction):

analytic theory of hadronic scattering described by the exchange of collective states: linear trajectories in the spin-energy $(\alpha-t)$ plane,

$$\alpha_{j}(\mathbf{t}) = \alpha_{j}(\mathbf{0}) + \alpha'_{j} \cdot \mathbf{t}$$
 (j = $\mathbf{\pi}$, P, I

Regge Theory and Experimental Observations

in diffractive scattering (soft process): \Box weak energy dependence of cross sect. : $\sigma \propto s^{\sim 0.2}$ \Box very small scattering angles \Rightarrow exponential dep. : $d\sigma/d|t| \propto e^{-b(W) \cdot |t|}$ \Box b slope increases with W \Rightarrow shrinkage: $b(W) = b_0 + 4\alpha'_P \cdot \ln(W)$

→ successfully parameterized by Regge trajectories, $\alpha_j(t) = \alpha_j(0) + \alpha'_j \cdot t$ → soft Pomeron exchange: $\alpha_p(t) = 1.08 + 0.25 \cdot t$ (Donnachie-Landshoff) $\alpha_p(0) = 1 + \epsilon =$ "intercept", determines the energy dependence of σ^{tot} ($\propto \sigma^{\alpha_p(0)-1} = \epsilon$) and σ^{el} , σ^{diffr} ($\propto s^{2\epsilon}$)

 α'_{P} = "slope", determines the growth with energy of the transverse size of the interaction (\Rightarrow color radiation cloud) and reflects the strength of binding forces

 \Rightarrow characterizes the confinement forces in QCD

 $b \sim R_{int}^2$

r_b

R_{int}

access to α'_{P} only in diffraction

Models for Hard VM Production

In the presence of a hard scale \Rightarrow perturbative QCD applicable In the target frame, VM production is a 3-step process:

Elastic VM at Hard Scale: pQCD Predictions

1. fast rise with energy, $W^{2(\alpha_{p}(< \dagger >)-1)}$:

Gluon from F₂ scaling violations

 $\sigma_{L} \propto \alpha_{s}^{2} (Q_{eff}^{2}) / Q^{6} \cdot [xg(x, Q_{eff}^{2})]^{2} \approx [x^{-0.2}]^{2} \approx W^{0.8}$ (use $x \approx Q^{2}/W^{2}$ at small x)

 $\rightarrow~$ fast increase of $\sigma_{\!L}$ with W^2

 \rightarrow Q² dependence slower than 1/Q⁶

- 2. universality of t-dependence: ~ $e^{-b_{2g}|t|}$
- → $b_{2q} \sim 4 5 \text{ GeV}^{-2}$ independent of W $\Rightarrow \alpha'_{P} = 0$ in 2 gluon approx.
- → BFKL LLA: $\alpha'_{P} \leq 0.1 \text{ GeV}^{-2} \Rightarrow \text{weak dep. of b on W only}$
- 3. approximate restoration of flavor independence at large Q^2 ρ^0 : ω : ϕ : J/ψ = 9 : 1 (.0.8) : 2 (.1.2) : 8 (.3.4)

→confront models with data

Experimental Signatures

ZEUS DETECTOR: $\gamma^*p \to \rho^0 p$ event

H1 DETECTOR: $\gamma p \to J/\psi Y$ event

Elastic VM in photoproduction ($Q^2 = 0$, $|t| \approx 0$)

\Rightarrow change of regime with mass of VM at Q² = 0

Elastic p° Mesons in yp

p measured in forward proton spectrometer

Elastic J/ ψ Mesons in γp

→ but deconvolution of xg from data still not possible

Elastic J/ ψ Mesons in γp

Elastic J/ ψ Electroproduction

Elastic p° Electroproduction

Xth Blois Workshop

Q² dependence : fit $\sigma(Q^2) \propto (Q^2 + M_{\rho}^2)^{-n}$

$b(Q^2)$ in Elastic Electroproduction: ρ vs J/ψ

→ slope b_{ρ} decreases with Q^2 : $b_{\rho} \approx b_{J/\psi}$ at high Q^2 → universal |t|-dependence if scale (Q^2 or M^2) is large

Universality of VM Production?

→ naïve SU(4) may be altered by VM wave function effects

Universality of VM Production : Ratio σ_{VM}/σ_{tot}

 \rightarrow clear W dependence of $\sigma_{J/\psi}/\sigma_{tot}$

→ W independence of $\sigma_{\rho}/\sigma_{tot}$ cannot be explained by pQCD or Regge ... but pattern similar to inclusive diffraction ...?

Proton-Dissociative VM Production in γp : High [t]

high-|t| domain: little explored so far at high-|t|, proton dissociative production dominates :

→ study proton dissociation to investigate high-|t| dynamics

VMs at High t : σ_V / σ_ρ and SU(4)

→ indication of flavor independence of VM production at high t?

VMs at High t : t-Dependence of W and α'_{P}

- → W-dependence doesn't change with |t|, described by pQCD
 → t provides a hard scale
- → α_P(†) ?

Pomeron Trajectory in Dependence of |t|

ZEUS : Pomeron trajectory in $\gamma^* p \rightarrow J/\psi p$ same as in $\gamma p \rightarrow J/\psi p$

Proton-Dissociative ρ^0 Electroproduction

→ factorization holds at proton vertex at low |t| : probability of proton disscociation is independent of projectile

Exclusive ρ° in $\gamma^* p$: Helicity Studies

angular distribution of $\rho \rightarrow \pi\pi$ decay gives information about helicity amplitudes $T_{\lambda,\rho\lambda\gamma}$ via spin-density matrix elements : test SCHC

→ measurements well described by pQCD model of 2-gluon exchange

Exclusive ρ° and ϕ in $\gamma^* p$: R = σ_L / σ_T

assuming SCHC + knowledge of γ^* polarisation: $R = \frac{\sigma_{\rm L}}{\sigma_{\rm T}} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$

10

MRT CTEO(5M) MR\$1(99)

 Q^2 (GeV²)

Uta Stösslein - Review of Vector Mesons and DVCS

Exclusive ρ° and ϕ in $\gamma^* p$: σ_L

[Guichon, Guidal, Vanderhaegen, Phys. Rev. D 60 (1999), 094017; private communication 2001] GPD calculations: \circ quark exchange mechanism dominates $\sigma_{\mathbf{L}}(\gamma^* \mathbf{p} \rightarrow \rho^0 \mathbf{p})$ \circ 2-gluon exchange mechanism dominates $\sigma_{\mathbf{L}}(\gamma^* \mathbf{p} \rightarrow \phi \mathbf{p})$

DVCS : Introduction

Bethe-Heitler

elastic production of real photon $d\sigma \propto |\tau_{DVCS}|^2 + |\tau_{BH}|^2 + |\tau^*_{DVCS} \tau_{BH}| + |\tau_{DVCS} \tau_{BH}^*|$

DVCS : QCD process \rightarrow sensitive to **underlying dynamics**

Bethe-Heitler : QED process \rightarrow background and interference

H1,ZEUS : high Q², small $x \rightarrow DVCS > BH \rightarrow DVCS$ cross section **HERMES** : low Q², medium $x \rightarrow BH > DVCS \rightarrow DVCS$ asymmetries

DVCS : Models

- and Strikman
- Freund and McDermott

Color Dipole based models

$$A \sim \int \Psi_{ini} \sigma_D \Psi_{out}$$

- Donnachie and Dosch
- Forshaw, Kerley and Shaw
- McDermott, Frankfurt, Guzey and Strikman

DVCS : Experimental Signatures

→ W dependence matches W^{0.7} behavior of hard VM production

→ fit Q⁻²ⁿ : n = 1.54 ± 0.07(stat) ± 0.06(sys)

→ Q² dependence well described by GPD or color dipole based models (integrated over experimental t range)

DVCS : Beam Charge and Spin Asymmetry

- → explore BH-DVCS interference term
- → BH suppressed in asymmetry measurements
- → BCA and BSA : access to full amplitude

 Φ : azimuth between $\gamma\gamma^*$ and e scattering planes

beam spin asymmetry \rightarrow pol. e beams

beam charge asymmetry $\rightarrow e^+-e^-$

DVCS : Kinematic Dependencies of BSA

 → no significant dependencies on kinematic variables
 → HERMES results limited by t-resolution : recoil detector upgrade (2005-6)

DVCS : Beam Spin Asymmetry for d and Neon

→ sizeable BSA for d and Ne
 → ratio A_{LU}^d/A_{LU}^p = 0.74 ± 0.24
 → needed : disentangle coherent and incoherent contributions

Conclusions

- Experimentally much progress has been achieved with high precision data in large kinematic region
- Theoretically the overall picture looks o.k., but
 - uncertainties still large
 - full NLO calculation are missing
- Scattering subprocess at hard scales understood in terms of pQCD
 → explore GPDs = map of the proton wave function
 Can we achieve the same level of understanding here as with F₂?
 ... more precise data (polarized and unpolarized) needed...

... and Outlook

For the near future:

- increased statistics of VMs at high Q² will help (HERA II)
- H1 and ZEUS with e-beam spin rotators and $e^{\scriptscriptstyle\pm}$
 - → study DVCS interference effects at the highest scale
- DVCS studies at COMPASS (commissioned in 2001) and HERMES

For the near+X future:

- improve detectors for diffractive measurements (Hermes recoil detector; EIC, HERA III...)