ep-Scattering at large Q² and high Luminosity

- · QCD laboratory HERA
 - Síte
 - Proton
 - eq-scattering
- Electroweak Physics
- New Particle Searches
- · Remaining Puzzles of HERA 1
- Outlook

HERA at DESY

DESY site and vicinity 6.3 km HERA tunnel extends far into residential Hamburg. Exptl. Halls are (typically) off

HERA Tunnel "Cold" proton ríng on top of "warm" electron ríng.

2/42

Elementary Interactions

LEP I

HERA

Tevatron

- pure elektroweak ínítíal State
- electromagnetic coupling (probe) to the carriers of the strong interaction
- hadroníc coupling, purely strong interaction

Quantum Chromodynamics

- Quantum Chromodynamics
 Gauge theory of the strong interactions
- Coupling a_s varies with momentum transfer/distance
- in leading order (LO)

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f)\ln Q^2 / \Lambda^2}$$

validity of perturbation theory has been well confirmed for large

momentum transfer

momentum transfers over the past 20 years (few per cent accuracy).

Quarks, as asymptotically free objects are thus often treated as real "particles" manifesting themselves as jets of particles.

Proton as a QCD-bound State

Síze: Quarks (3) confined to a region of 1 fm díameter

- Mass: 938 MeV »Σm_q ≈ 0
- Momentum $\Sigma_{X_i} \approx 1$, ~ proton momentum
- spín: 1/2

Methods of Investigation

- Bound systems and their excitations
- lattice QCD
- Scattering experiments (preferentially with QCD-blind probe) to investigate structure

not understood!

(Some partial success in specific systems)

Resolution of the Probe: Q²

Adjustable resolution at HERA

- $Q^2 \approx 1 \text{ GeV}^2$ < proton radius r_p
- $Q^2_{max} \approx s$ = $4E_e E_p \approx 100000 \text{ GeV}^2$ corresponds to $\approx 1/1000 r_p$

"Proton structure" may be explored over three orders of magnítude at HERA e

Results on:

- Valence quarks
- Sea quarks

í.e. scattering centres and

• gluons

Strong Interaction - Perturbation Theory

- Interaction between the constituents of the Proton
- Parton-Densíty dístríbutíons q_í(x) are Q² dependent:

Scaling Violations

 $d\sigma/dxdQ^2 \sim 2\pi \alpha^2/(xQ^4) * F_2$

Gluon Distribution

α_s=0.1150 ± 0.0017 (exp) +0.0009 - 0.0007 (Model) ± 0.0050 (Scale)

- NNLO calculations start to be available
- theoretical residual uncertainty ~1%

Limits of Validity of Perturbative QCD Calculations

Electron Quark Scattering at large Q² or W

Behavior at small x

Transition to high Energies

- $W^2 = Q^2/\chi^*(1-\chi) \approx Q^2/\chi$
- for x < 0.01 the variation of the structure functions seem to be independent of x
- $F_2 = c(Q^2) * x^{-\lambda}$

Fractal structures in the Proton?

Longitudinal Structure Function F_L

Theoretical Uncertainties of the Parton Densities

Longitudinal Structure Functions:

- large contributions of the next higher order
- Uncertainties also in NNLO

Precísion data on F_L required to clarify issue.

v-Nucleon Scattering Cross Section at high Energies

Understanding Color Singlet Exchange in QCD

 Color-singlet exchange involving >1 Parton correlated parton density Generalized Parton Density

- $f_{i/p}(x_1, x_2, Q^2)$
- · DVCS
- Vector meson-Production

Factorization

 σ~Flux * elem. X-section proven in hard diffraction (for fixed x,t)

→ QCD interpretation of diffraction (see talk by D.Wegener)

Charm in DIS

"Strong Tasks" for HERA II

Domains

- Region of large Q^2 : α_s , parton densities
- small x: hígh Parton densítíes New quantum system?
- small Q²: Confinement-region
- large CMS Energy:
 EW-Tests and
 "Beyond the SM"

→ QCD Experiments under well defined conditions

Integrated Luminosity HERA I

Events recorded

- > 100 pb⁻¹ of e^+p -data available (more than half of that taken in 2000)
- > 15 pb^{-1} of e^{-p} -data available
- lots of data with high quality, which have not yet been examined in detail

→ Many opportunities for theses available.

Elektroweak Processes at HERA

Charged Current (CC)

purely electroweak Interactíon

characterízed as

- 1/Q⁴ domínates
- Z-contribution with $1/(1+(M_Z/Q)^2)$ and $1/(1+(M_Z/Q)^2)^2$ dampened
- xF_3 , γZ -Interference, charge sensitive and partially parity violating
- W-Propagator $1/(1+(M_w/Q)^2)^2$

 \mathbf{xF}_3

• Sum rules (analogous to v_N Scattering), e.g. quark counting sum rules for xF_3 Integrals

Expectation for Parity Violation with Polarized Beams

Neutral Current

- axíal and vector couplings only from pure Z-term:
- kínematical suppressed, relevant only for $Q^2 > 10000 \text{ GeV}^2$

Charged Current

- $\sigma_{pol} = \sigma_{unpol}^{*}(1+P)$ since $\sigma(e_{L}^{+}p) = 0$
- "Textbook Experiment" feasible with a few 10 $\rm pb^{-1}$

Axial- und Vector Couplings for Light Quarks

achievable precision comparable to that of Heavy Quarks at LEP

Sensitivity to Elektroweak Parameters

Leptoquarks

HERA

• Lædírectly produced in electron-quark fusion, coupling λ .

Tevatron

 pair creation, independent of coupling strength SCALAR LEPTOQUARKS WITH F=0 $(\tilde{S}_{1/2,L})$

LQ Branching Ratios

Scalar LQ

• en →LQ

Vector LQ

- ed $\rightarrow LQ \rightarrow eX$, VX
- Neutríno channel complements electron channel

Excited Leptons

Remaining Puzzles from HERA I

Events with

- large missing transverse momentum p_T^X
- ísolated leptons at large $p_{\rm T}$

Explained in Standard-Model as

• W-Production

but rate!

W-Production - Theory

Production process

Isolated LeptonS at large p_T^X

 P_T^X / GeV

Single Top-Production

γ/Z

q

a

Puzzle 2: Events with 2 Electrons

- 2 Electrons with $E_{1,2}$ >10 GeV (5 GeV) and 20°< θ <150°
- a (possible) 3^{rd} electron with $E_3 > 10$ GeV und $5^0 < \theta < 175^0$

е

a

 γ/Z^0

eq-eeeq 4 Fermion Final State

- EW Diagrams
- e-final state: Interference
- elastic + inelastic

Expectation for Multi-Electron Production

Kinematical Distributions of the 2-Electron-Events

2 Muon Events

Selection

- 2 muons with $20^\circ < \theta < 160^\circ$
- good description by SM

Comparison to the multi-electron-sample

- no excess!
- tests in the central angular range
- smaller acceptance and lumínosíty

→ not conclusive (neither supporting nor refuting findings in electron channel)

HERA II

Goal

- 1 fb^{-1} till end 2006
- Polarízation (~55%)
- Runs with reduced Ep (e.g. 300, 365, 400 Gev) to measure F_L

Method

 strong focussing of the beams at the Interaction Point

Solution

 super conducting quadrupoles in the Experiment

Consequences

- Synchrotron radiation is generated in the IP-region
- no compensating magnets
- space restrictions

Status

- spec. Lumínosíty has been achieved (desígn $1.8^*...$) ~ 1.5^*10^{30} cm⁻²s⁻¹ (mA)⁻²
- but...

H1 Detector Upgrade

Commissioning of HERA II

HERA Startup

Crítical

• drift chamber currents

Synchrotron Radiation

- careful beam steering
- coating of surfaces

Vacuum

- cold/warm interface
- resídual gas: H_2O , CH_4
- elastic scattering of 920 Gev protons on residual molecules

Development of Chamber Current

DP 20/10/200

Synchrotron Radiation

42/42

combining

- dírect observation
- precision physics (QCD ξ EW)

Goals 1fb-1

- Search at small scales
- Electroweak Effects
- Solution to the remaining puzzles

"Tevatron aspect" of HERA

Strong Interaction:

Parton structure (F₂, F_L, ...),
 charm, bottom, jets

- Díffraction inclusive and Final states: charm, (bottom), γ

"LEP aspect" of HERA