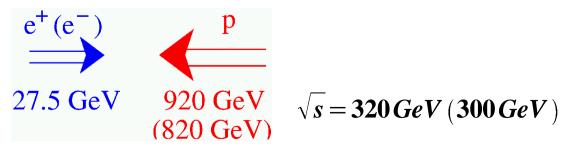
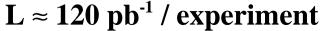
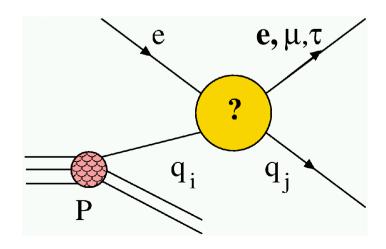
FCNC and LFV at HERA

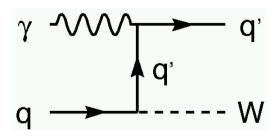

SUSY 2002 – Hamburg – 20.06.2002


Dominik Dannheim (University of Hamburg / DESY)


On behalf of:

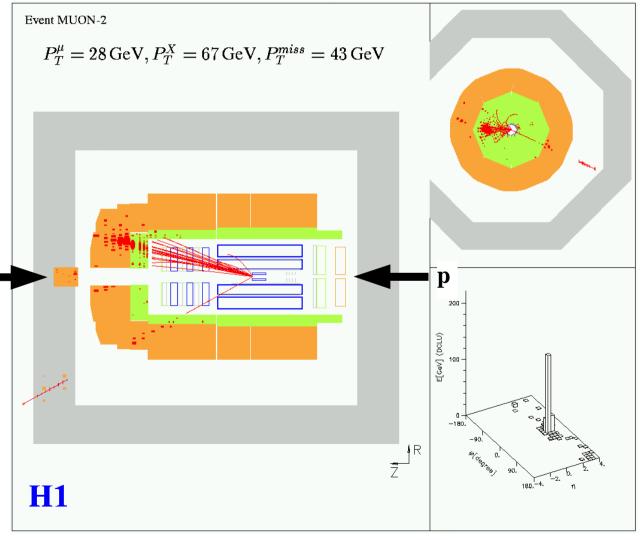
- Isolated Leptons
- •Flavour Changing Neutral Currents
- Lepton Flavour Violation
- •Summary/Outlook

Events with Isolated Leptons

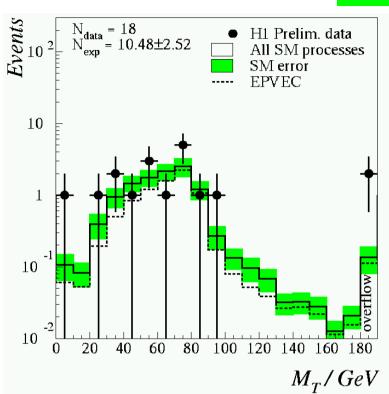

Search for: $e p \rightarrow e X l v$

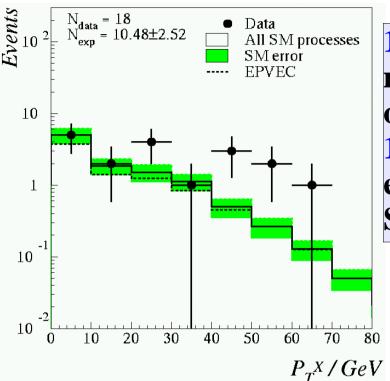
Signature:

- isolated lepton
- large missing transverse momentum p_T^{miss}
- (large hadronic transverse momentum p_T^X)


Main background:

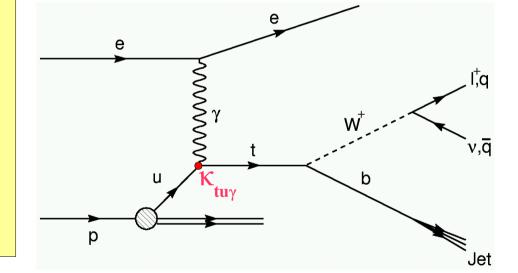
W production, e.g.:




$$\sigma(ep \to eW^{\pm}X) \approx 1pb$$

H1 candidate event:

H1 Isolated Leptons

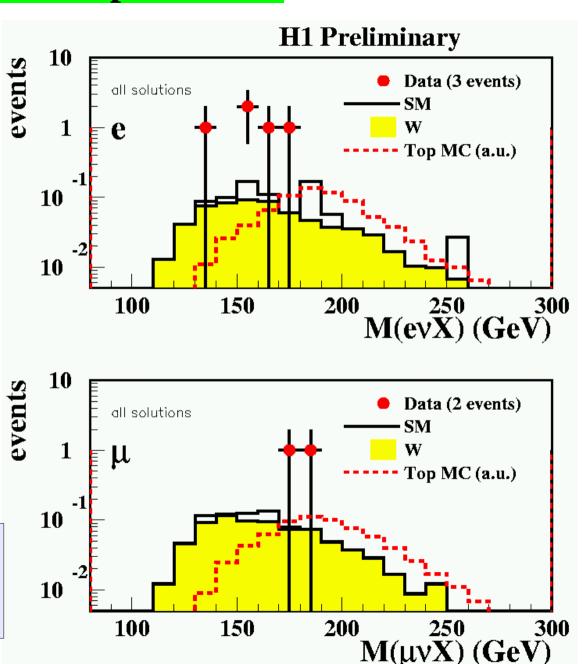

18 electron and muon events observed, 10.5 ±2.5 expected from SM

H1 preliminary 94-00 e^+p (101.6 pb $^{-1}$)	Electron Obs./expected (W)	Muon Obs./expected (W)	combined Obs./exp.	
$p_T^X > 25 \; GeV$	$4/1.29 \pm 0.33 \; (1.05)$	$6/1.54 \pm 0.41 (1.29)$	$10/2.8\pm0.7$	
$p_T^X > 40~{ m GeV}$	$2/0.41 \pm 0.12 \ (0.40)$	$4/0.58 \pm 0.16 \ (0.53)$	$6/1.0\pm0.3$	

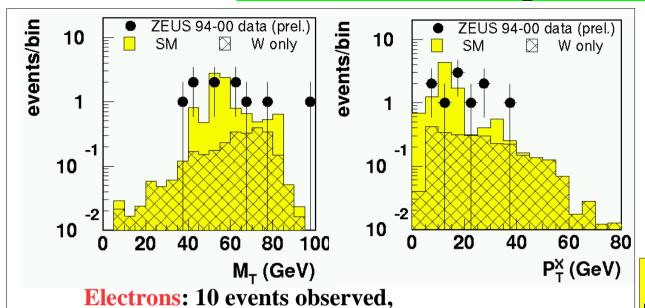
- Excess of isolated lepton events above SM prediction.
- •Events have large hadronic momenta.

Single Top Quark Production at HERA

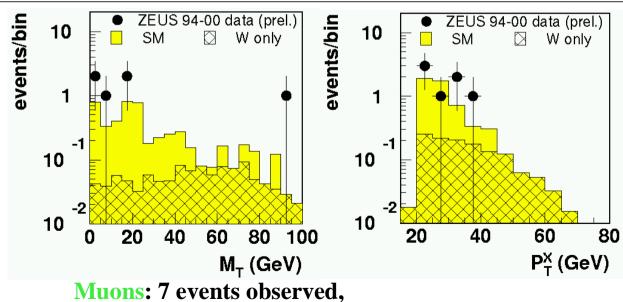
- ep → etX in the SM only through loops,
 GIM suppressed
 - ⇒ negligible cross section (~1fb)
- Possible production mechanism through Flavour Changing Neutral Currents (FCNC)
- Predicted by SM extensions
- → Effective anomalous coupling K_{tuy}
 - Z_0 exchange suppressed
 - u quark dominates at high x



- Top quark decays to Wb
- W decays into lepton+neutrino (30%) or into hadrons (70%).


H1 Final Top Selection

require:


- positively charged isolated lepton
- $p_{T}^{X} > 25 \text{ GeV} (35 \text{ GeV})$
- $\cdot M_{\rm T}^{\rm lv} > 10 \text{ GeV}$
- 3 electron and 2 muon events compatible with single top production.
- 1.8±0.29 events expected from background (mainly W production).
- Top mass reconstructed as invariant mass of l-v-jet, using kinematic constraints

ZEUS Isolated Leptons + Single Top

11.0 \pm 1.6 expected from SM (mainly NC DIS)

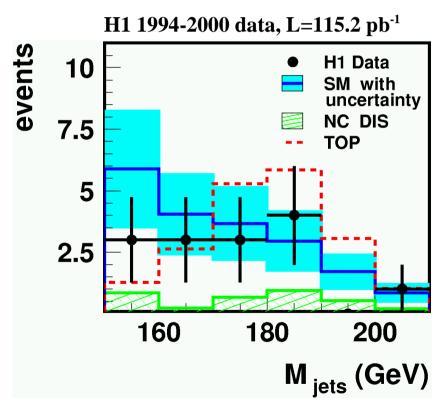
5.4 \pm 0.7 exp. from SM (mainly muon pair prod.)

- No excess above SM expectation observed.
- Distribution of kinematic variables is compatible with SM prediction.

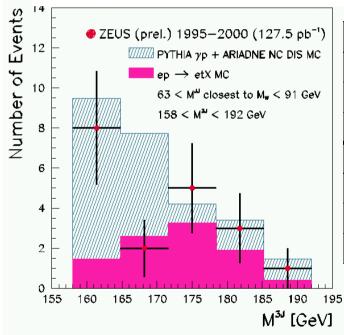
After final top selection cuts:

ZEUS preliminary 94-00 $e^{\pm}p~(130~{ m pb}^{-1})$	Electron Obs./expected (W)
$p_T^X > 25~{ m GeV}$	$1/1.14 \pm 0.06 \; (1.10)$
$p_T^X > 40~{ m GeV}$	$0/0.46 \pm 0.03 \; (0.46)$

ZEUS preliminary	Muon		
94-00 $e^{\pm}p$ (130 ${ m pb}^{-1}$)	Obs./expected (W)		
$p_T^X > 25~{\sf GeV}$	$1/1.29 \pm 0.16 \ (0.95)$		
$p_T^X > 40~{\sf GeV}$	$0/0.50 \pm 0.08 \ (0.41)$		

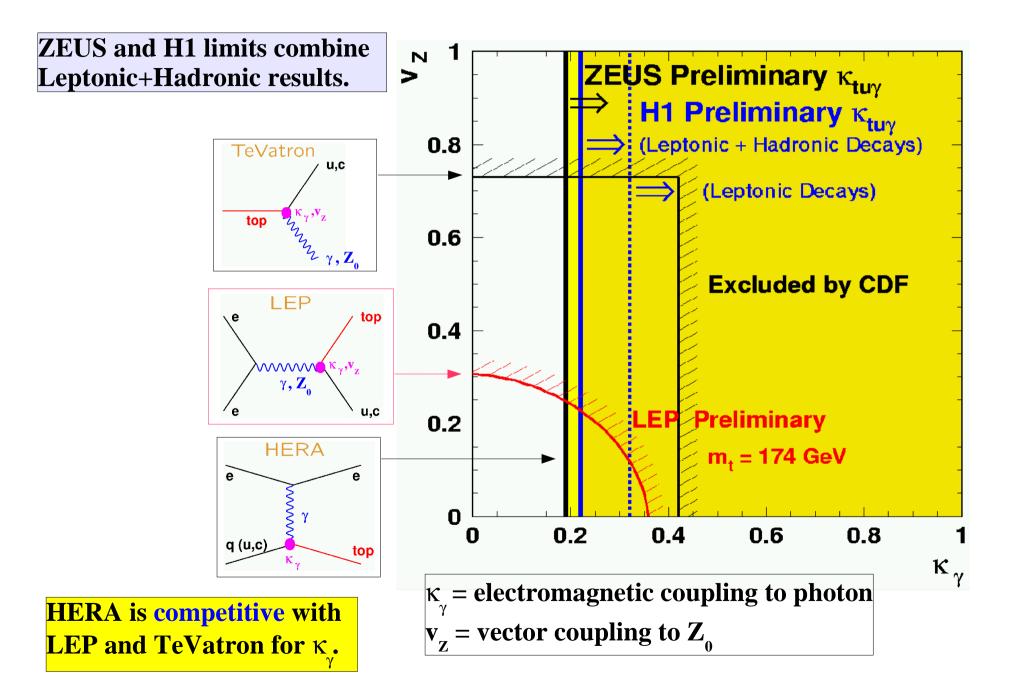

No candidates for Single Top Production

Single Top Quark Production - Hadronic Channel


Search for: $e u \rightarrow e t \rightarrow e b W \rightarrow e b q \overline{q}$

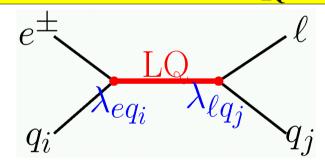
Signature: 3 jet events with $M^{jj} \approx M_W$ and $M^{3j} \approx M_{top}$.

Background: $\gamma p \rightarrow 3$ jet QCD processes.



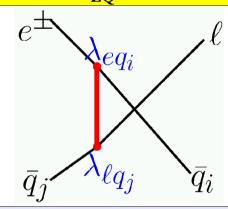
H1 94-00	After Top Cuts
Data	14
SM	19.6+-7.8
Efficiency	27%
ZEUS 95-00	
Data	19
SM	20.0
Efficiency	31%

- No excess above SM prediction in both experiments.
- Sensitivity lower with respect to leptonic channel.


Exclusion Limits on FCNC

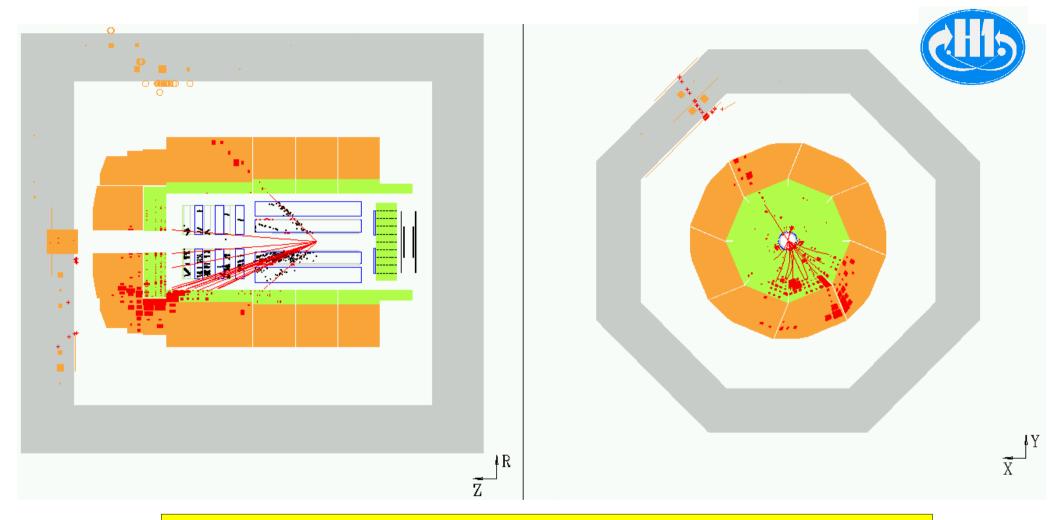
Lepton Flavour Violation

- Extensions of the Standard Model allow LFV (Leptoquark models, R-parity violating SUSY, ...)
- HERA is an ideal place to search for both, $e^{\pm} \rightarrow \mu$ and $e^{\pm} \rightarrow \tau$.
- · Quantitative description: LQs coupling to different generations.
- **→Buchmüller-Rückl-Wyler model:**
 - 14 LQ types with Fermion number 0, 2 (F=L+3B)

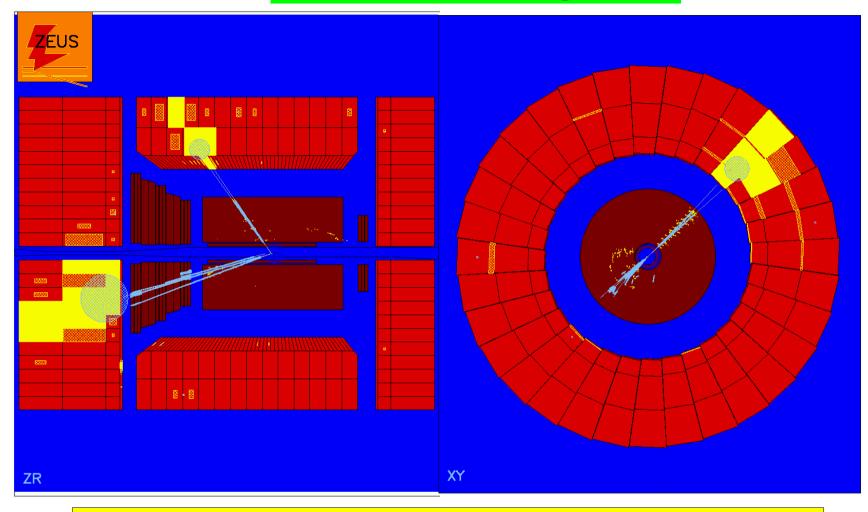

Narrow Width Approximation for Low Mass LQs $(M_{LO} < \sqrt{s})$

Signature:

- Isolated μ or τ with high $\mathbf{p}_{_{\mathbf{T}}}$
- Peak in the l-jet mass spectrum
- l and jet back-to-back
- only F=0 LQs considered (interaction with valence quark for e⁺p)


High Mass Approximation $(M_{10} >> \sqrt{s})$

Signature:


- Isolated μ or τ with softer $\mathbf{p}_{_{\mathbf{T}}}$ spectrum
- Both F=0 and F=2 LQs are considered

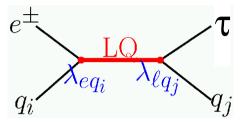
LFV µ Channel Signature

- •Isolated μ in the missing $p_{_{\rm T}}$ direction
- Small SM background
- •High selection efficiency (~40%-60% for low mass LQs)

LFV τ Channel Signature

Simulated event, $m_{LQ} = 200 \, GeV$

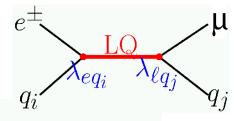

$$\stackrel{+}{\tau} \rightarrow K^+ \pi^0 \ \overline{\nu_{\tau}}$$

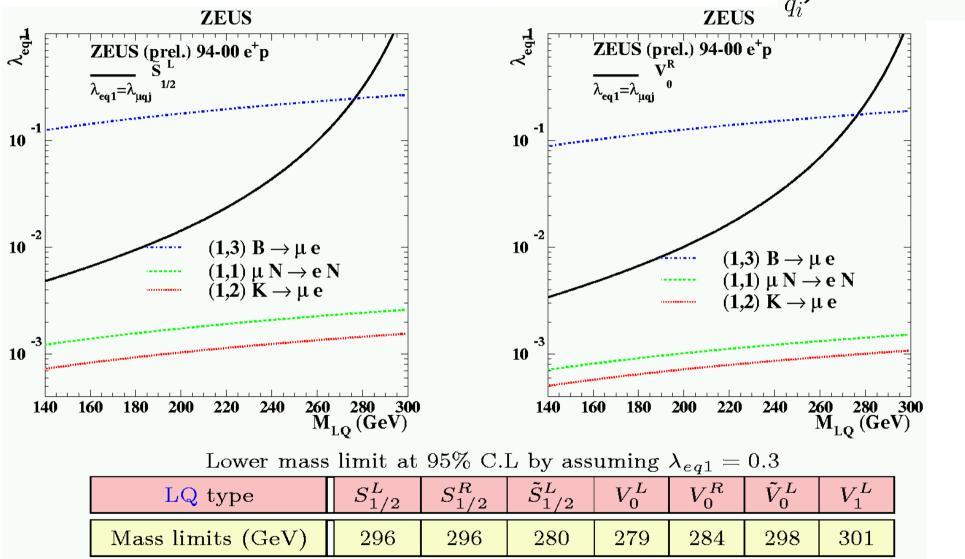

- •High p_T isolated e or μ in the missing p_T direction
- •Narrow jet with 1-3 tracks, pointing into the missing p_T direction
- Low SM background
- •Selection efficiency ~25%-30%

Search for $e+p\rightarrow \tau X$: Low Mass Limits

No LFV events found in both experiments.

→ Set limits on characteristic Yukawa couplings

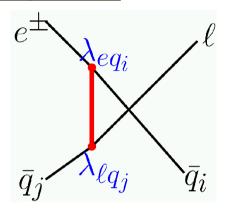




$$\sigma^{NWA} \propto \lambda_{eq_1}^2 \beta_{\tau qj}$$

Similar results obtained by H1.

Search for e+p→µX: Low Mass limits



Search for $e+p\rightarrow\mu X$, $e+p\rightarrow\tau X$: high mass limits

• contact interaction cross section for $M_{LQ} >> \sqrt{s}$:

$$\sigma^{HMA}(\lambda, M_{LQ}) \propto \left[\frac{\lambda_{eq_i}\lambda_{lq_j}}{M_{LQ}^2}\right]^2$$

- selection efficiency independent of \mathbf{M}_{LQ} , but varies with quark generation
- New preliminary results from ZEUS using all data (94-00).
- limits for higher generation quarks improved.

Search for $e+p\rightarrow \mu X$: high mass limits

	$\tilde{F}=0$		iminary (94-	$\frac{\lambda_{eq_i}\lambda_{\mu q_j}}{M_{LQ}^2} \; (\text{TeV}^{-2})$			
$q_i q_j$	$S_{1/2}^L$	$S_{1/2}^R$	$\tilde{S}_{1/2}^{L}$	V_0^L	V_0^R	$ ilde{V}_0^R$	V_1^L
	$e^-ar{u} \ e^+u$	$e^-(ar u+ar d) \ e^+(u+d)$	$rac{e^-ar{d}}{e^+d}$	${e^- ar d} top e^+ d$	$rac{e^-ar{d}}{e^+d}$	$_{e}^{e^{-}\bar{u}}_{e^{+}u}$	$e^-(\sqrt{2}ar{u}+ar{d}) \ e^+(\sqrt{2}u+d)$
	$\mu N ightarrow e N$	$\mu N ightarrow e N$	$\mu N ightarrow e N$	$\mu N ightarrow e N$	$\mu N ightarrow e N$	$\mu N ightarrow e N$	$\mu N ightarrow e N$
1 1	7.6×10^{-5} 1.1	2.6×10^{-5} 0.9	7.6×10^{-5} 1.6	2.6×10^{-5} 1.0	2.6×10^{-5} 1.0	2.6×10^{-5} 0.8	$1.1\times10^{-5}\\0.4$
	$D ightarrow \mu ar{e}$	$K ightarrow \mu ar{e}$	$K ightarrow \mu ar{e}$	$K ightarrow \mu ar{e}$	$K ightarrow \mu ar{e}$	$D o \muar{e}$	$K ightarrow \mu ar{e}$
1 2	4	2.7×10^{-5}	2.7×10^{-5}	1.3×10^{-5}	$.3 \times 10^{-5}$	2	1.3×10^{-5}
	1.2	1.0	1.7	1.2	1.2	1.0	0.5
1.0		$B o \mu ar{e}$	$B o \muar e$	V_{ub}	$B o \mu ar{e}$		V_{ub}
1 3	*	0.8 1.8	0.8 ·· 1.8	$0.2 \\ 1.5$	$0.4\\1.5$	*	$\begin{array}{c} 0.2 \\ 1.5 \end{array}$
	$D ightarrow \muar{e}$	$K o \muar e$	$K ightarrow \mu ar{e}$	$K o \mu ar{e}$	$K ightarrow \mu ar{e}$ _	$D o \mu ar{e}$	$K o \mu ar e$
2 1	4	2.7×10^{-5}	2.7×10^{-5}	1.3×10^{-5}	1.3×10^{-5}	2	1.3×10^{-5}
	3.6	2.4	3.2	1.3	1.3	1.3	0.6
	$\mu \rightarrow 3e$	$\mu ightarrow 3e$	$\mu \rightarrow 3e$	$\mu ightarrow 3e$	$\mu ightarrow 3e$	$\mu ightarrow 3e$	$\mu ightarrow 3e$
2 2	$\begin{array}{c} 5\times10^{-3} \\ 5.8 \end{array}$	7.3×10^{-3} 3.1	1.6×10^{-2} 3.8	8×10^{-3} 1.9	$\begin{array}{c} 8\times10^{-3} \\ \textbf{1.9} \end{array}$	$2.5\times10^{-3} \\ 2.9$	1.5×10^{-3}
		$B ightarrow ar{\mu} e K$	$B ightarrow ar{\mu} e K$	$B ightarrow ar{\mu} e K$	$B ightarrow ar{\mu} e K$	1.0	$B ightarrow ar{\mu} e K$
2 3	*	$\begin{array}{c} 0.6 \\ 4.4 \end{array}$	$\begin{array}{c} 0.6 \\ 4.4 \end{array}$	$\begin{matrix} 0.3 \\ 2.9 \end{matrix}$	0.3 - 2. 9	*	$\begin{array}{c} 0.3 \\ 2.9 \end{array}$
		$B ightarrow \mu ar{e}$	$B ightarrow \muar{e}$	V_{ub}	$B ightarrow \mu ar{e}$		V_{ub}
3 1	*	0.8	0.8	0.2	0.4	*	0.2
		$egin{array}{c} 4.3 \ B ightarrowar{\mu}eK \end{array}$	$egin{array}{c} 4.3 \ B ightarrowar{\mu}eK \end{array}$	$egin{array}{c} 1.4 \ B ightarrowar{\mu}eK \end{array}$	$egin{array}{c} 1.4 \ B ightarrowar{\mu}eK \end{array}$		$egin{array}{c} 1.4 \ B ightarrow ar{\mu}eK \end{array}$
3 2	*	0.6	0.6	0.3	0.3	**	0.3
		5.8	5.8	2.2	2.2		2.2
3 3		$\begin{array}{c} \mu \rightarrow 3e \\ 7.3 \times 10^{-3} \end{array}$	$egin{array}{c} \mu ightarrow 3e \ 1.6 imes 10^{-2} \end{array}$	$egin{array}{c} \mu ightarrow 3e \ 8 imes 10^{-3} \end{array}$	$egin{array}{c} \mu ightarrow 3e \ 8 imes 10^{-3} \end{array}$		$egin{array}{c} \mu ightarrow 3e^{-\alpha} \ 1.5 imes 10^{-3} \end{array}$
33	*	7.3 × 10 - 7.7	7.7	3.9	3.9	*	3.9

Search for e+p→τX: high mass limits

	e -	o au	ZEUS	94-97	$oldsymbol{F}=$	= 0	
$\alpha \beta$	$S^L_{1/2} \ e^+u_lpha$	$S_{1/2}^R$ $e^+(u+d)_lpha$	$rac{ ilde{S}_{1/2}^L}{e^+d_lpha}$	$egin{array}{c} V_0^L \ e^+d_lpha \end{array}$	$V_0^R = e^+ d_lpha$	$egin{array}{c} ilde{V}_0^R \ e^+u_lpha \end{array}$	$egin{array}{c} oldsymbol{V_1^L} \ e^+(\sqrt{2}u+d)_lpha \end{array}$
1 1	$ au ightarrow \pi e$ 0.4	$ au ightarrow \pi e$ 0.2	$ au o \pi e$ 0.4	G_F	$ au o \pi e$ 0.2	$ au ightarrow \pi e$ 0.2	G_F 0.2
1 2	3.0	$ \begin{array}{c} 2.5 \\ \tau \to Ke \\ 5 \end{array} $	$ \begin{array}{c} 4.6 \\ K \to \pi \nu \bar{\nu} \\ 10^{-3} \\ 4.7 \end{array} $	$ \begin{array}{c} 3.3 \\ \tau \to Ke \\ 3 \end{array} $	$ \begin{array}{c} 3.3 \\ \tau \to Ke \\ 3 \end{array} $	2.4	$K ightarrow \pi u ar{ u}$ $2.5 imes 10^{-4}$
1 3	*	$B o au ar{e} X$	$B o auar{e}X$	3.7 $B \to l\nu X$ 2	4	*	$egin{array}{c} 1.3 \ B ightarrow l u X \ 2 \ \end{array}$
2 1		$ \begin{array}{c} 5.1 \\ \tau \to Ke \\ 5 \end{array} $	$K \to \pi \nu \bar{\nu}$ 10^{-3}	$ \begin{array}{c} 4.6 \\ \tau \to Ke \\ 3 \end{array} $	$ \begin{array}{c} 4.6 \\ \tau \to Ke \\ 3 \end{array} $:	$ \begin{array}{c c} \textbf{4.6} \\ \hline \textbf{K} \rightarrow \pi \nu \bar{\nu} \\ 2.5 \times 10^{-4} \end{array} $
	$\tau \to ee\bar{e}$	$egin{array}{c} 9.2 \ au ightarrow eear{e} \end{array}$	au o eear e	4.9 $ au ightarrow eear{e}$	$\tau \to ee\bar{e}$	$\tau \to ee\bar{e}$	au o eear e
2 2	20	$ \begin{array}{c} 30 \\ \hline 11 \\ B \to \tau \bar{e} X \end{array} $	$ \begin{array}{c c} 66 \\ \hline 12 \\ B \to \tau \bar{e} X \end{array} $	$ \begin{array}{c c} 33 \\ \hline 6.2 \\ B \rightarrow l\nu X \end{array} $	$ \begin{array}{c} 33 \\ \hline 6.2 \\ B \rightarrow \tau \bar{e} X \end{array} $	10 11	$ \begin{array}{c c} 6.1 \\ \hline 4.3 \\ B \rightarrow l\nu X \end{array} $
2 3	*	8 16	8 16	2 12	4 12	*	2 12
3 1	*	$egin{array}{c} B ightarrow auar{e}X \ 8 \ 17 \end{array}$	$B ightarrow au ar{e} X$ 8 17	$egin{array}{c} \mathbf{V}_{ub} \ 0.2 \ egin{array}{c} 5.4 \end{array}$	$egin{array}{c} B ightarrow auar{e}X \ 4 \ 5.4 \end{array}$	*	$egin{array}{c} {f V}_{ub} \\ 0.2 \\ {f 5.4} \end{array}$
3 2	*	$egin{array}{c} B ightarrow au ar{e} X \ 8 \ {f 22} \end{array}$	$egin{array}{c} B ightarrow au ar{e} X \ 8 \ {f 22} \end{array}$	B ightarrow l u X	$B ightarrow auar{e}X$ 4 7.6	*	B ightarrow l u X 2 7.6
3 3	; *	$ au ightarrow eear{e}$ $ 30$	$ au o eear{e}$ $ ag{66}$	$ au ightarrow eear{e}$ $ 33$	au o eear e $ 33$	*	$ au ightarrow eear{e}$ 6.1 15

	e -	au	ZEUS	8 94-97	$ m{F} $	= 2	
αβ	$S_0^L = e^+ar{u}_lpha$	$S_0^R \ e^+ar{u}_lpha$	$egin{array}{c} ilde{S}_0^R \ e^+ar{d}_lpha \end{array}$	$S_1^L \ e^+(ar u+\sqrt2ar d)_lpha$	$V^L_{1/2} = e^{+ar{d}_lpha}$	$V_{1/2}^R \ e^+(ar u+ar d)_lpha$	$ ilde{V}_{1/2}^L \ e^+ar{u}_lpha$
	G_F	$ au o \pi e$	$ au o \pi e$	G_F	$ au o \pi e$	$\tau \to \pi e$	$ au o \pi e$
11	0.3	0.4	0.4	0.3	0.2	0.1	0.2
	5.4	5.4	7.1	2.8	2.6	1.3	1.7
	$K o\pi uar u$	0.12	au o Ke	$K o\pi uar u$	$K o\pi uar u$		
1 2	10-3		5	10-3	$5 imes 10^{-4}$	3	
	14	14	9.3	4.6	5.5	4.5	8.2
	\mathbf{V}_{ub}		$B o auar{e} X$	\mathbf{V}_{ub}	$B o auar{e}X$	$B o auar{e}X$	
13	0.4	*:	8	0.4	4	4	*
	*		12	5.5	8.4	8.4	
:	$K o\pi uar u$:	au o Ke	$K o\pi uar u$	$K o\pi uar u$	au o Ke	
2 1	10^{-3}		5	10^{-3}	$5 imes 10^{-4}$	3	
	5.9	5.9	7.8	3.2	2.5	1.3	1.6
	au o eear e	au o eear e	au o eear e	au o eear e	au o eear e	au o eear e	au ightarrow eee
2 2	20	_20	66	55	33	15	10
	19	19	13	6.2	6.5	5.2	9.7
	B o l u X		B o auar e X	B o l u X	B o auar e X	$B o au ar{e} X$	
2 3	4	*	8	4	4	4	*
	*		17	8.1	11	11	
	B ightarrow l u X	:	B o auar e X	B o l u X	B o auar e X	B o auar e X	
3 1	4	*	8	4	4	4	*
:	*	:	9.3	4.7	2.6	2.6	
	B o l u X		$B o auar{e} X$	B o l u X	B o auar e X	$B o auar{e}X$	
3 2	4	*	8	4	4	4	*
	*		21	10.2	7.6	7.6	
	:	JL.	$ au ightarrow eear{e}$	au o eear e	$ au ightarrow eear{e}$	au o eear e	:
3 3	*	*	66	55	33	15	*
	:		30	16	15	15	:

Summary and Outlook

- Searches for Single Top Production in the leptonic and hadronic decay channel of the W performed by H1 and ZEUS.
 - Excess of events at H1 in the leptonic channel, which are compatible with single top quark production:

H1: 5 events observed, 1.8 exp. from BG

ZEUS: 0 events observed, **1.0** exp. from **BG**

- No excess in the hadronic channel for both experiments.
- H1 and ZEUS have searched for LFV interactions in both, the μ and τ channel.
 - No LFV events found at HERA up to now.
 - Limits competitive with low energy experiments, e.g. up to $M_{LO}>282~(\tau)$ and 301 GeV (μ) for λ =0.3, NWA.
- Waiting for data from HERA II:
 - 10 times higher luminosity → up to 3 times higher sensitivity to couplings for both searches
 - improved detectors, in particular forward tracking