

H1: Status and Prospects

Benno List

Institute for Particle Physics, ETH Zürich

- New Physics Results
- Operation: Progress and Problems
- Status of Upgrade Projects
- ◆ Plans

Physics Results for the Summer

Successful conference

season:

Amsterdam:

- ◆ 46 contributed papers
- ◆ 9 Talks

New Preliminary Results:

- High Q² NC/CC data from full HERA–I dataset, with QCD fits
- F_2^D at low Q^2
- Diffractive dijet photoproduction
- Forward jet production
- Prompt photon production
- W production with hadronic decays
- Search for doubly charged Higgs

Final High-Q² Cross Sections

- Full HERA–I data set has been analyzed
- Q² = 100 30000 GeV²,
 X=0.0013 0.65
- Cross section shows nicely the unification of electromagnetic and weak interactions.

Parton Distribution Fits

Page 4

Report from H1: PRC Open Session, 30.10.2002

B. List, ETH Zürich

Diffractive Dijets: DIS vs. yp

- H1 diffractive parton densities predict dijet rate
- At Tevatron: suppression by factor ~10: Gap destruction by spectator interactions
- In photoproduction at H1: Expect behaviour similar to hadronhadron scattering, but: Far less gap destruction!

- Photon radiation off quarks in γp interactions: Nice QCD test
- Separate γ s from π^0 s! Challenge:
- not shown) is low, NLO fits. Leading order MC (Pythia,
- NLO from ZEUS data at Hint of discrepancy with low η is not confirmed.

(qd)

_չև**բ**

٥p

Doubly Charged Higgs?

The 6 events from the di- and trilepton analysis. Only one event survives the H++ analysis cuts.

- H⁺⁺: Possible explanation for anomaly in di- and trilepton analyses
- Dedicated analysis: Events observed in H1 are not compatible with H++ production (only 1 event survives)
- First search for single production of doubly charged Higgs bosons, triggered new analyses of LEP2 data

B. List, ETH Zürich

A Taste of Luminosity

Page 8

ep collider: "worst of both worlds" (read: "most challenging"):

- Beampipe heating by synchrotron radiation from positrons => Bad vacuum
- High pp cross section (40mbarn)
 => high p induced background
- Design currents for HERA-II are not substantially higher than at HERA-I, detector limits are the same, nevertheless:
- Background does currently not allow data taking at design beam currents due to excessive chamber currents and radiation dose for silicon detectors.

Drift chamber operation $\frac{1}{10}^{250}$ limits currents to $\frac{1}{10}^{225}$ $\frac{256}{10}^{225}$ $l_{e} l_{p} < 1000 mA^{2}$ $\frac{256}{10}^{225}$ Target: $l_{e} l_{p} < 1000 mA^{2}$ $\frac{1}{10}^{250}$ $l_{e} l_{p} = 7425 mA^{2}$ $\frac{1}{10}^{250}$

current situation. N.B.: Similar limits from radiation dose for silicon.

B. List, ETH Zürich

improvement over

Proton Induced Background

Beam proton scatter off residual gas nuclei. Particles hit H1 directly or after secondary scattering.

triggered events in a proton-only run

Vertex distribution of random

Primary Beam Proton

Report from H1: PRC Open Session, 30.10.2002

B. List, ETH Zürich

Page 11

Proton Induced Background, cont'd

MC studies show: The collimators are not the problem.

What has changed compared to 2000? Pressure? Gas composition?

 Indications for presence of medium-heavy nuclei (C, O) in addition to H (CH₄?)

 Source of vacuum problem unclear. Must be identified before shutdown.

Status of Upgrade Projects

Report from H1: PRC Open Session, 30.10.2002

Page 13

Forward Silicon Tracker FST

Forward Tracker

A high-Q2 event with reconstructed tracks in the upgraded forward tracker

 5 new chambers installed additional to 9 existing ones
 => increased redundancy

 About 85% of channels are operational

B. List, ETH Zürich

Central Inner Propchamber CIP

5 Layer proportional chamber Allows to reconstruct z position of vertex for triggering

purposes

 Broken readout chips and cooling problem:
 only 2–3 layers out of 5 available
 Insufficient for trigger

=> Insumuter to the upper => Needs repair in shutdown

Everything else works!

Fast Track Trigger FTT

Status:

- All hardware has been delivered and tested O.K.
- Programming of chips 80% completed
- Commissioning hardware, debugging firmware
- FTT expected to be fully operational next summer

The FTT uses 12 drift chamber layers for a fast track fit with good momentum resolution

Hardware existing Report from H1: PRC Open Session, 3

B. List, ETH Zürich

First analog hits seen

Very Forward Proton Spectrometer VFPS

Measures diffractively scattered protons: E'_p~920GeV, p_t<0.7GeV Located 200m away from IP in region with sc proton magnets

- Cold bypass for helium in production, detectors are being tested with cosmics
- Ready for installation in coming shutdown

Design of the bypass at 200m

the bypass

Construction of

Report from H1: PRC Open Session, 30.10.2002

Physics before the Shutdown

F₂c: Can be measured Projection with 10pb⁻¹ with FST and forward shows potential for measurement interesting tracker

0 measurement with 10pb⁻¹ using the MC study showing the possible statistical accuracy of an F₂^c

Physics plans, cont'd

Polarized e+p scattering: A central HERA-II task!

 $\sigma = \sigma_0 (1 + P/2)$

The chiral structure of the standard model has never been tested in ep scattering.

- Understanding background has priority
- Currents: $I_e I_p \sim 1000 \text{ mA}^2$
- ♦ Integrated Luminosity of 10pb⁻¹
- ◆ Polarization

HERA experiments and anticipate a rapid We look forward to continued cooperation solution to our background problems. with the machine group and the other