Diffractive Final States at HERA

S. Schätzel Univ. Heidelberg

on behalf of H1 and ZEUS Collaborations

Workshop on Low x Physics Antwerpen, 18 September 2002

- Introduction
- Models of Diffraction
- Global Event Shapes
- D* Measurements
- Dijet Production in DIS
- Photoproduction of Dijets

Motivation

Aims

- nature of diffractive exchange?
- test QCD factorisation

D* and Dijet Measurements

- sensitive to diffractive gluon via boson–gluon fusion
- high p_T and mass: applicability of pQCD

$$x_{IP} \approx \frac{Q^2 + W_X^2}{Q^2 + W^2}$$

$$\beta \approx \frac{Q^2}{Q^2 + M_X^2} \qquad z_{IP} \approx \frac{Q^2 + M_{12}^2}{Q^2 + M_X^2}$$

Resolved Pomeron Model

IP pdf

Ingelman, Schlein

- QCD hard scattering factorisation: (proof by Collins)
- + "Regge factorisation": (assumption, consistent with DIS data)

$$f_i^D = f_{IP/p}(x_{IP}) f_i^{IP}$$

IP flux from proton

diffractive PDFs:

- from DGLAP QCD fits to inclusive diffr. DIS
- dominated by gluons

Colour Dipole Models

- proton rest frame
- $\gamma \longrightarrow q\bar{q}, q\bar{q}g$ colour dipoles • $\gamma \longrightarrow q\bar{q}, q\bar{q}g$ colour dipoles
- dipoles scatter off proton via 2 gluon exchange

- cross sections related to gluon density in proton
- Saturation Model (Golec–Biernat, Wüsthoff)
 - strong k_T ordering: $k_T(g) \ll k_T(q,\bar{q})$
 - gluon density from inclusive DIS
- RIDI (Ryskin)
 strong k_T ordering
 - gluon density from PDF (CTEQ)
- BJLW (Bartels, et al.)
 - no k_T ordering
 - free parameter: minimal gluon k_T

0 15

-

0 15

Event Shapes – Seagull Distributions

described by models

ZEUS

Initiated by gluon
Initiated by gluon

described by IP remnant model, also expected for dipole models

3 Jet Production – p_T of forward jet

D* Measurements II

 R_D=6% of inclusive D* are diffractively produced
 ~ described by IP Model

- Comparison to IP Model w/ new H1 Fit, LO:
 - consistent
 - large uncertainties of data and prediction

L=19/pb

Diffractive Dijets in DIS

Dijets in DIS – New H1 Fits

Comparison to IP Model with new H1 fits

- shape remains well described
- Normalisation consistent with data when considering uncertainties:

model parameters, scales, PDFs

Diffractive Dijets at the Tevatron

 IP partons which describe diffr. DIS Dijets overestimate pp̄ diffractive dijet rate by factor ≈ 10

breakdown of factorisation

confirmed by new H1 Fits

due to additional hadron remnant?

Dijets in Diffractive Photoproduction

jets

Summary

- Diffractive Final States well described by
 - Resolved IP Model with gluon dominated IP
 - pQCD Dipole Models with inclusion of $q\bar{q}g$
- Evidence for gluon remnant from diffractive exchange
- IP Model with new H1 Fits agree with DIS and γp dijets, and D* cross sections within uncertainties
- Within IP Model at LO:
 - γp dijets suppressed with respect to DIS dijets by factor 1.8
 - direct and resolved photon processes suppressed by same factor
 - no indication of subprocess dependence