Leading baryon production and inclusive diffraction at HERA with the ZEUS experiment

A.Garfagnini

Antwerpen, 17th Sep 2002

INFN – Padova for the ZEUS Collaboration

Highlights:

✓ Leading proton production models;
 ✓ Vertex factorization and violation: absorption/re-scattering models;
 ✓ Pion structure function.

New results on inclusive diffraction from very low to high Q²;
 Model comparisons.

List of new results discussed

- ICHEP02 paper 833, LP w/ LPS, PHP-BPC-DIS, "Leading proton production in e+p collisions at HERA", to be submitted to Nucl. Phys. B;
 - ✓ ZEUS Coll., LN PHP-BPC-DIS, DESY-02-39 (hep-ex/0205076), accepted by Nucl. Phys. B;
 - ✓ ICHEP02 paper 824, LN PHP + DIS , "Properties of events containing
 - leading neutrons in DIS and PHP at HERA".
 - ✓ ICHEP02 paper 821, M_x method DIS, (Q² 2-80 GeV²), "Deep inelastic diffractive scattering with the ZEUS Forward Plug Calorimeter";
 - ✓ ICHEP02 paper 822, LPS BPC, (Q² 0.03-0.6 GeV²), "The diffractive cross section at small Q² at HERA";
 - ✓ ICHEP02 paper 823, LPS DIS, "get the title";

Introduction

Leading baryon production at small t in hadronic interactions \Rightarrow soft process. Conserving baryon number:

In standard fragmentation: final state N from p remnant

In particle exchange models: baryon from exchange of virtual Pomeron, Reggeon (e.g. ρ, ω, f_2), π .

 $(x_L = E_{p,n}/E_{beam}, p_t^2)$

ZEUS forward detectors

DIS sample: positron Leading Proton Spectrometer (LPS): in CAL 6 stations at z=24-90 m (last three used) $(Q^2 > 3 \text{ GeV}^2)$ Acceptance limited by magnet apertures to $x_1 > 0.6$ and $p_1^2 < 0.5 \text{ GeV}^2$ Q51,55,58 B47 Q42 Q30,34,38 B26 B18,22 06-15 B72 B67 B77 FNC **S**5 S4 - LPS -S3 S2 S1S6 FPS Forward Neutron Calorimeter (FNC): z=106-107 m, on zero-degree line

Acceptance limited by magnet apertures to $\theta_n < 0.8$ mrad PHP sample: positron in LUMI (Q² < 0.02 GeV²) BPC sample: positron in BPC (Q² ~ 0.1-0.6 GeV²)

BPC = Beam Pipe Calorimeter

Pion structure function, F_2^{π}

- WHERE: in the region where factorization is ~ valid: high Q² and high x_L and OPE describes the spectra.
- HOW: as the cross section, the structure function factorizes:

 $F_2^{LN}(x_{Bj}, Q^2; x_L, t) = f_{\pi/p}(x_L, t) \times F_2^{\pi}(x_{Bj}/(1 - x_L), Q^2)$

- Use measured F_2^{LN} , $f_{\pi/p}$ from literature, then extract F_2^{π}
- Use the x_L region where the background is smallest ($x_L = 0.73$)
- In the literature, at $x_L = 0.73$, flux value varies by a factor ~ 2
- Use extremes of flux
- Compare to parametrization of F_2^{π} extracted from pp data (low Q², high x_{Bj} fixed target data)

Energy spectra

Shape and data normalization is compared to:

✓ standard fragmentation models
→ do not describe data;

 ✓ QCD inspired model, the Gluon-Iteracting model of Durães et al. gives a better description;

✓ exchange models, need multiple processes (Pomeron, Reggeon, π° and π - Δ) to describe the data.

A.Garfagnini – page 8

Vertex factorization

dN/dp_t² for protons, b slopes

 p_t^2 distributions measured up to 0.5 GeV² and fit to A exp (-b p_t^2).

b related to int. radius (b = $R^2/4$).

No dependence on x_L or Q^2 is apparent.

Data compatible w/ pp data at $\sqrt{s} = 19.6 \text{ GeV}.$

→ Vertex factorization.

Data are well described by a Regge inspired model.

Proton yield **ZEUS**

A.Garfagnini – page 11 $\overline{F_2}$ LP(2)

Ratio multiplied by:

- ✓ fit to published ZEUS low Q² F₂ data (ZEUS Regge);
- ✓ F₂ parameterization (M.Botje QCD fit)

 $F_2^{LP(2)} = F(x_{Bj}, Q^2) < r^{LP(2)} >$

 $\Rightarrow F_2 \text{, scaled down, well} \\ \text{describes } F_2^{\text{LP}} \text{ (small variations w/ Q^2)}$

 \Rightarrow Result similar to neutrons

Factorization violation

Averaging $r^{LP(3)}$ over x and x_L reveals a small violation of factorization: 15-20% for Q² ~ 0.02 to 100 GeV² (somewhat higher for n)

- different evolution of F_2 and $F_2^{\ LP(2)}$?

• absorptive effects in the $\gamma^* p$ system (smaller γ size at higher Q²)?

Factorization Violation

Within exchange picture, factorization can be violated, e.g. via rescattering models (D'Alesio & Pirner)

e.g. n production via π^+ exchange:

 γ π p

no rescattering, n detected

rescattering, n lost (lower x_L, higher p_t)

DIS: $\gamma^* \sim \text{point like}$ PHP: $\gamma \sim \text{hadron like}$, (size ~ 1/Q), \Rightarrow rescattering more probable In OPE <r_{n\pi}> smaller at lower x₁ \Rightarrow more rescattering at lower x₁

Neutron x_L spectra vs Q^2

- fewer neutrons at lower \boldsymbol{x}_L and lower Q^2
- rescattering model (valid for Q² ~ 10–100 GeV²) gives a qualitative description
- ratio is also a function of \boldsymbol{x}_{L}

Selection of Diffractive events

ZEUS

Diffractive cross section (DIS)

- New measurement w/ Forward Plug Calorimeter (FPC);
- x4 more data points;
- Large increase in kinematics range;
- Reduce substantially N_{diss} (M_N < 2.3 GeV).

 \rightarrow Strong rise w/ W at high M_X

Diffractive cross section (BPC)

ZEUS BEKW = Bartels et al., Eur. Phys. J C7, 443 (1999)

New data in the BPC (transition ?) region Main features of the data well described by BEKW parametrization

qqg ? fluctuations dominant

- for large M_{χ}
- for low Q^2

Extraction of α_{IP}

Common x_{IP} dependence in all bins consistent with the assumption of Regge factorization

from Regge factorization:

$$F_{2}^{D(3)} = f_{IP/p}(x_{IP}) > F_{2}^{IP}(b,Q^{2})$$

with
$$f_{IP}(x_{IP}) \mu \overset{\text{are}}{\underset{i}{\mathbf{v}}} \frac{1}{x_{IP}} \overset{\mathbf{\ddot{o}}^{2\mathbf{a}_{IP}(t)-1}}{\overset{\mathbf{\ddot{o}}}{\overset{\mathbf{\dot{o}}}}}$$

 $\mathbf{a}_{IP}(t) = \mathbf{a}_{IP}(\mathbf{0}) + \mathbf{a}_{IP}'(t)$

by fitting x_{IP} dep. at fixed $\beta_{I}Q^2$: $a_{IP}(0) = 1.14 \pm 0.02(stat.) \pm 0.02(stat.)^{+0.04}(model)$

Is the Pomeron universal?

 $a_{IP}(0)$ measured in diffraction at different Q²

Within the uncertainties there is no evidence of a change of $a_{IP}(0)$ with Q²

The line $\alpha_{IP}(0) = \lambda + 1$ is obtained from fits to the inclusive small x proton structure function data

Q^2 dependence of σ^{DIFF}

BGK = Bartels, Golec-Biernat and Kowalski

Summary

Leading baryons (below diffractive peak):

- ✓ standard fragmentation models fail to describe baryon production;
- ✓ particle exchange models describe rate and spectra (x_L and p_t^2);
- ✓ π dominant for $n \rightarrow F_2^{\pi}$ need multiple exchanges for p;
- ✓ vertex factorization:
 - \checkmark approximately valid at high Q² is broken at low Q²;
 - \checkmark form of violation varies w/ x_L (*n* case);
 - violation consistent w/ re-scattering in particle exchange (any further suggestion?)
- ✓ F_2^{π} and $\overline{F}_2^{LP(2)} \propto F_2^{p}$;

Diffraction:

- ✓ New results covering wide kinematical range;
- ✓ Features of σ^{diff} consistent w/ γ fluctuations into $\overline{q}qg$ and $\overline{q}qg$.
- ✓ Ratio $\sigma^{\text{diff}}/\sigma_{\text{tot}}$ flat over large kinematical ranges.