

LLWI 2002

- Summary of high Q² results from HERA-I
- HERA upgrade
- H1 and ZEUS upgrades
- Physics potential
- Summary

Introduction

& ZEC

H1 & ZEC

Events easy to recognize: high trigger efficiency, low background lepton back-scattered, high energy

CC (signature is missing $p_{\rm T}$) more difficult at low y

1 & ZE

Neutral Current

$$\frac{e}{q} \frac{d^2 \sigma_{NC}^{e^+p}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left[Y_+ \cdot F_2(x, Q^2) \mp Y_- \cdot x F_3(x, Q^2) - y^2 F_L(x, Q^2)\right]$$

$$\frac{e}{q} \frac{d^2 \sigma_{NC}^{e^+p}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left[Y_+ \cdot F_2(x, Q^2) \mp Y_- \cdot x F_3(x, Q^2) - y^2 F_L(x, Q^2)\right]$$

$$\frac{e}{q} \frac{d^2 \sigma_{NC}^{e^+p}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left[Y_+ \cdot F_2(x, Q^2) \mp Y_- \cdot x F_3(x, Q^2) - y^2 F_L(x, Q^2)\right]$$

$$F_2^{NC} = x\sum_f A_f(Q^2)[q(x, Q^2) + \overline{q}(x, Q^2)]$$

$$\frac{e}{q} \frac{d^2 \sigma_{NC}^{e^+p}}{dx dQ^2} = x\sum_f B_f(Q^2)[q(x, Q^2) - \overline{q}(x, Q^2)]$$

$$\frac{e}{q} \frac{d^2 \sigma_{NC}^{e^+p}}{dx dQ^2} + (v_e^2 + a_e^2)(v_f^2 + a_f^2)\chi_Z^2$$

$$\frac{e}{q} \frac{1}{4\sin^2 \theta_w \cos^2 \theta_w} \frac{Q^2}{Q^2 + M_Z^2}$$

$$\frac{e}{q} \frac{1}{4\sin^2 \theta_w \cos^2 \theta_w} \frac{Q^2}{Q^2 + M_Z^2}$$

$$\frac{e}{q} \frac{1}{2\pi\alpha^2} \frac{1}{q} \frac{d^2 \sigma_{NC}^{NC}}{dx dQ^2}$$

$$\frac{e}{q} \frac{1}{q} \frac{d^2 \sigma_{NC}^{NC}}{dx dQ^2}$$

$$\frac{e}{q} \frac{1}{q} \frac{d^2 \sigma_{NC}^{NC}}{dx dQ^2}$$

$$\frac{e}{q} \frac{1}{q} \frac{1}{q$$

HERA Neutral Current $d\sigma/dQ^2 (pb/GeV^2)$ 10 -1 10 (qd) -2 10 do/dx e \triangle H1 e⁺p 94-00 prelim. -3 10 △ H1 e p ZEUS e⁺p 99-00 prelim. 0 ZEUS e p 98-99 prelim. 0 10 SM e⁺p (CTEQ5D) -5 SM ep (CTEQ5D) 10 do/dx / do/dx (CTEQ5D) -6 10 v < 0.9 -7 10 $10^{\overline{3}}$ 4

H1 & ZEUS

• SM describes shape over 10⁶ fall in cross section

• evidence for the effect of $\gamma - Z$ interference at high Q^2

Quality of the data

J. Martin LLWI 2002

H1 & ZEUS

NC: first measurement of xF_3

- agrees with QCD: small changes over large range of Q^2 due to QCD scaling violations
- results limited by small *e*⁻ sample
- sensitive to valence quarks:

$$xF_3 \propto (q - \overline{q}) = ((q_v + q_{sea}) - \overline{q}_{sea}) \approx q_v$$

• sum rule test:

recall:
$$xF_{3}^{\gamma-Z} = x\sum_{q} 2e_{q}a_{q}(q-\overline{q})$$

then: $\int_{0}^{1} F_{3}^{\gamma-Z} dx \approx 2e_{u}a_{u}N_{u} + 2e_{d}a_{d}N_{d} = 5/3$
H1: $\int_{0.02}^{0.65} F_{3}^{\gamma-Z} dx = 1.88 \pm 0.35 (\text{stat.}) \pm 0.27 (\text{syst.})$

Charged Current

- extract individual quark densities
- measure M_W from propagator dependance

$$Y_{\pm} = 1 \pm (1 - y)^2$$

$$\widetilde{\sigma}_{CC} = \frac{2\pi x}{G_F^2} \left[\frac{Q^2 + M_W^2}{M_W^2} \right]^2 \frac{d^2 \sigma_{CC}}{dx dQ^2}$$

& **Z**

CC cross section

Space-like M_{W} measurement: H1: $M_{W} = 80.9 \pm 3.3 \pm 1.7 \pm 3.7 \text{ GeV}$ ZEUS: $M_{W} = 81.4 \pm 2.7 \pm 2.0 \pm 3.3 \text{ GeV}$

- SM describes shape well:
 - below M_W^2 , slow fall with Q^2 due to reduced x phase space

H1 & ZE

- above M_W^2 , rapid fall due to W propagator
- difference *e*⁻ vs *e*⁺:
 - $-\log Q^2$, sea important, σ ~ same

high
$$Q^2$$
, valence dominates:
 $\widetilde{\sigma}_{CC}^{e^-p} \approx u$
 $\widetilde{\sigma}_{CC}^{e^+p} \approx (1-y)^2 d$

so rough expectation:

proton has $2u, 1d; \quad \int_{0}^{1} (1-y)^2 dy = 1/3$

$$\Rightarrow \sigma^{e^-p} / \sigma^{e^+p} \approx 6$$

• d/u critical measurement

Electroweak unification

 $\sigma_{CC} \approx \sigma_{NC}$ for $Q^2 > M_W^2, M_Z^2$

H1 & ZEUS

J. Martin LLWI 2002

& ZE

H1 xu and xd extraction

& **Z**

ZEUS NLO QCD fit

& ZE

H1 F_I determination at high Q^2 H1 & ZEUS

• Extend data at high y by lowering cut on scattered e from 11 to 6 GeV

500 600 700 800

 Q^2 / GeV^2

400

Collaboration

0.008

• SM background mostly *W*

e,*µ*

• Compare expts in same phase space:

P ^x _T >25 GeV	e Obs (exp)	μ Obs (exp)	$e^{+\mu}$ Obs (exp)
H1	4 (1.3)	6 (1.5)	10 (2.8+/-0.7)
ZEUS	1 (1.1)	1 (1.3)	2 (2.4+/-0.2)

H1 sees them, ZEUS doesn't ?? puzzle ??

need more data to resolve

HERA-II

- Luminosity upgrade 5x increase > 150-200 pb⁻¹/yr
 - strong focusing inside experiments: SC magnets
 - new magnet arrangement +/- 100 m from experiments
- Longitudinal polarization for H1/ZEUS
 - >50% (70% design goal)
- experiment upgrades:
 - forward tracking, Si vtx detector (new for ZEUS, new fwd. planes for H1)
 - needed for forward jets, high energy scattered electron, heavy quarks
 - online triggers
 - short decays for b,c; D^* reconstruction
 - lumi and pol measurement detectors
- HERA-II run until 2006 : goal

- divided ~ equally $e_R^+, e_L^+, e_R^-, e_L^-$

1000 pb⁻¹/experiment

10x current

data set

& 7

ZEUS upgrades

H1 & ZEU

ZEUS MVD and STT

H1 installation of central components H1 & ZEUS

• Very tricky operation ... had to be done blind from one end!!

• H1: crystal cerenkov detectors to detect *e* and γ in $ep \rightarrow ep\gamma$

• ZEUS: 2 methods (different systematics) to detect γ

• goal: 1%

- face increased synchrotron background, multiple overlapping γ + physics

[1 & ZE

Polarization measurement

- cross-check with accurate measurement of both transverse (TPOL) and longitudinal (LPOL) polarization plus machine lattice simulation
- need short time-scale measurement, ideally bunch-by-bunch
 - challenge in high synchrotron radiation environment

1&7

- Laser beam switched between R and L circular polarization
- LPOL: measure *E* asymmetry of back-scattered Compton photons
 - new Fabry-Perot cavity +laser, new sampling calorimeter
 - high rate 1γ per bunch
 - calibration on Compton edge

E

& **Z**

 γ_L or γ_R

`در

Precision at high Q^2

& **Z**

Importance for LHC

LHC parton kinematics (LO)

- e.g., W production at high y - low x = 0.0003
- can the extrapolation to high Q^2 be done reliably??
 - an area of active theoretical research: NNLO, resummation of $\ln 1/x$ terms, etc.
 - e.g., for $F_{\rm I}$, LO \rightarrow NLO \rightarrow NNLO converges only for $Q^2 > 5 \text{ GeV}^2$

Quark densities

0.1

0.0

10-410-310-2

10-+10-310-2

10-410-310-2

10-+10-310-2

10-410-310-2

H1 & ZEU.

⇒ complete survey of parton content of the proton!

Diffraction at high Q^2

- QCD understanding of colour singlet exchange still intense field of study
- need more data with jets, VM, charm, with tagged leading *p*

& **Z**

- H1: new spectrometer at 220 m
- measure $-t < 0.5 \text{ GeV}^2$, resolution ~ 0.2 GeV²

Polarization important

at
$$Q^2 = 10,000 \text{ GeV}^2$$
, $x = 0.2$,
 $\sigma(e_{L}) = \frac{\sigma(e_{L})}{\sigma(e_{R})} \approx 1.7 \pm 0.06 \text{(Stat.)}$
 $\sigma(e_{R}) = 0.06 \text{(Stat.)}$
 $\sigma(e_{R}) = 0.05 \text{ a)}$
 $\sigma(e_{R}) = 0.5 \text{ b)}$
 $\sigma(e_{R}) = 0$

H1 & ZEUS

different couplings

Р

Polarization examples

edici-n 0.25 Measure: Neutrino **HERA** LEP 10 LEP 2σ v_{μ} to ~ 13% LEP 3_o CCFR 1000pb⁻¹ 250pb⁻¹ a_{μ} to ~ 7% 0.2 LEP/SLC SM Neutrino SM 0.15 (cf. LEP c and b) (a)0.1 0.45 0.5 0.55 0.4 0.6 a_{u-type} a 0.25 Sensitivity Gµ (m_H=100,GeV) 81.5 e⁻p 0.225 to beam GeV P=-0.7 CC 250 pb⁻¹ polarization 81.0 CC + NC0.2 Gµ ′(m_H=800 GeV) m_W 1000 pb⁻¹ and $\sigma(m_t) = 5 \text{ GeV}$ 80.5 CC + NC0.175 P = 01000 pb⁻¹ P = 0.20.15 P = 0.580.0 P = 0.71% systematics 0.45 0.5 0.55 79.5 $\delta M_W \approx 50 \,\mathrm{MeV}$ a_u 79.0 0 50 100 150 200 250 300 GeV m_t

& ZE

New physics ?

<u>H1 & ZEUS</u>

- Rp violating SUSY
- lepton flavour violation
- excited fermions
- contact interactions

In many regions of "search phase space" HERA already sets the best limits (see Corradi). Large luminosity increase will further enhance the sensitivity.

Sensitivity to $WW\gamma$ vertex: anomalous couplings $\Delta \kappa_{\gamma}$, λ_{γ} parameterize deviation from SM

- No time for a summary!
- HERA-II about to begin:
 - first test lumi run in December
 - problems with

proton ring aperture synch. radiation way too high now fixed new collimators being built install early March

- first lumi run begins Mar 17
 - experiments are ready
 - start with e^+ , switch to e^- in June
- we look forward to exciting physics with high luminosity