The New H1 Luminosity System For HERA II

Arnd E. Specka

for the H1 Luminosity Group

- Luminosity measurement at HERA II
- **Overview of the New H1 Luminosity System**
- Fibre detectors
- Fast Electronics and DAQ
- first HERA beam as seen by the Lumi system

The HERA II Luminosity upgrade

IERA II running: 2002–2006

- oal: $L = 7.6 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ (equivalent 250 pb⁻¹/year)
- low? stronger beam focusing at interaction points

C combined function magnets in H1 (and ZEUS)

- longitudinal polarization "for all or for none"
- stronger bending \Rightarrow increased synchrotron radiation lev

eam gas background subtraction, acceptance correile-up effect correction at high rates

pact of the HERA Upgrade on the H1 Lumi Syste

Requirements for the New Luminosity System

ton Detector

Inchrotron radiation filter \rightarrow 2 X0 of Be: dose reduced by \sim 10⁻ st response \rightarrow Cherenkov calorimetry diation hardness \rightarrow sampling calorimetry with quartz fibres od energy resolution \rightarrow maximal light yield + fine sampling osition measurement of γ beam \rightarrow fine granularity in x and

ctron Tagger side GI1 (1st warm) quadrupole magnet gap → compactness ood energy and position resolution → scintillating fibre calorim

stronics and Data Acquisition System
st pulse shaping (<96ns) and digitization → avoid pulse overlap
ual read-out → H1 main DAQ (slow) and Lumi-DAQ (fast)
st histogramming DAQ → Online/Offline Luminosity
vent readout → position measurement + monitoring</pre>

Overview of the New H1 Luminosity System

Photon Detector: W/Quartz-fibre Calorimeter

Key Parame

15422 quartz f
 (total length ~1)
 W/fibre V ratio
 total depth:
 sampling freq.

average X_{0::}
 Moliere radius:

Geometry

 alternating lay ⇒ indep. sam

Design Perfor

stoch. term:	19.8
sampling:	16.4
photostat .:	11.1

Photon Detector Performance: Energy Response

in CERN test beam 1999 + 2000 electrons 6-100GeV

ercalibration by iterative method earity: 1% for 8 GeV < E < 100 GeV ergy resolution compatible with design value lependent sampling by x and y layers otostatistics measured with LED ibration system: 130 p.e./GeV

E-Sum	stoch. termA	const. t
x strips	27.58(47)%	0.1(
y strips	27.37(26)%	0.65
all strips	19.24(12)%	0.52
Г	1 ;	
0.1	• • • •	Е _{тот}
-	····· 0	Е _{тот,х}
0.08		Е _{тот, ү}
р ш 0.06		

noton Detector Performance: Position measurem

igh sensitivity to the shower core narrow apparent showers econstructed impact point position: weighted sum of strip centres • CERN test beam: co'd x v/s drift chamber x t of a correlation function sidues → position resolution

$$\sigma_x = \frac{5mm}{\sqrt{E[GeV]}}$$

Electron Tagger: Pb/Scintillating Fibre SpaCal

heasure scattered electron energy and position (γp and B hoton detector cross calibration: E(γ)+E(e)=E(e-beam)

- ad/scintillating fibre spaghetti alorimeter (1:2.26 Vol. ratio) (x) x 2(y) cells 13x12x200mm³
- tal depth: 22 Xo
- cated inside the gap of GI1 HERA uadrupole magnet at 6 m from IP

agger Performance: Energy and Position Resolut

RN test beam data:

earity: 1% for 6 GeV < E < 15 GeV

ergy resolution depending on photomultiplier tubes:

pher E resolution and good agreement achieved in DESY test beam with Philips PM

Beryllium Synchrotron Radiation Shield

reduce radiation dose on photon detector by 10^{-4} acceptable dose on fibres: O(50 Mrad/year)

material more efficient to absorb rating 500keV~2MeV component of rotron radiation with a given "X0–Budget"

Electronics and Data Aquistion Overview

ast analog electronics and digitization, noise suppression lual pipelined readout of ADCs ast histogramming DAQ (Mhz)

Fast Pulse Shaping and Digitization

mplification, fast shaping + compensation of coax. cable FE summation + common mode subtraction (fake channe

Fast Histogramming DAQ via Dedicated Bus

DC: 24ns (4 samples per bunch crossing), 12 bits ual pipeline read–out: H1 DAQ (VME) and LumiDAQ (Altera Bus acq. modes: bunch train (unbiased, E sums, high statistics,1M triggered event (all channels, monitoring)

First HERA Beam: Photon Detector Calibration

hannel intercalibration by iterative method

t of (BH spectrum \otimes detector response) to E sums

Summary and Outlook

- completely new H1 Luminosity system designed to meet harsh requirements of the HERA II environments
- radiation hard photon detector
- dedicated Data Acquisition system
- system has been installed in 2001
- now in commissioning phase:
- detector calibration
- high current (= high rate) operation
- development of monitoring tools