Heavy Quark Production D H Saxon University of Glasgow

UNIVERSITY of GLASGOW

Experimental Review: open charm and beauty production Mostly HERA, with LEP and TeVatron

Progress in technique

- Charm finding: decay length tag, CDF 2-track trigger
- Beauty finding: p_T^{rel} , impact parameter, $D^*\mu$ correlations
- Progress in theory; understanding corrections, CCFM

Results

- Charm content of photon
- DIS: double differential, F_2^{cc} , diffraction
- Beauty production c.f. NLO and $\gamma\gamma$ reactions

Charmed meson finding

D^+ production in DIS: H1

 $D^+ \rightarrow K^- \pi^+ \pi^+$

 $2 < Q^{2} < 100 \text{ GeV}^{2}; 0.05 < y < 0.7$ $p_{t}(D) > 2.5 \text{ GeV}; |\eta(D)| < 1.5$

$$\sigma_{vis}(ep \rightarrow eDX) = (2.16 \pm 0.19^{+0.46}_{-0.35})nb$$

LO+PS good description of shape and normalisation

similar results for D^* , D^0 , D_s production

Charm Fragmentation

f(c-D)

 \pm (stat)

 \pm (syst)

world

 $\gamma_{\rm s}$

or

PHP: $z = (E + p_{par})/2E_{jet}$

HERA charm frag looks like LEP charm frag

 $\gamma p \rightarrow c \overline{c} X$

2 jets. D* tag

Fraction of photon energy in two highest- E_T jets:

$$x_{\gamma}^{obs} = (\sum_{j=1}^{2} E_T e^{-\eta}) / 2 y E_e$$

Direct $x_{\gamma}^{obs} > 0.75$ q-exchange $d\sigma/d\cos\theta^* \sim (1 - |\cos\theta^*|)^{-1}$

Resolved $x_{\gamma}^{obs} < 0.75 c$ in remnant includes g-exchange $d\sigma/d\cos\theta^* \sim (1 + \cos\theta^*)^{-2}$

Rutherford scattering

Dijet angular distributions

Clear evidence for charm content of photon

D* resolved/direct ratio

No γ^{*} structure assumed Low x_{γ}^{obs} comes from parton shower evolution AROMA (DGLAP) below data CASCADE (CCFM) closer

Charm production in DIS

2 hard scales: m_c , Q^2 : use to measure xG(x)

Parton shower at high Q^2

DGLAP - order in k_T (HVQDIS) ? Problems at low-xBFKL - order in xlow x OK, Q^2 evolution? CCFM - order in η (CASCADE) unify ?

CCFM evolution gives xG(x) different from DGLAP:

- *xG*(*x*) higher for 0.01<*x*<0.1
- more b-production

*D** differential cross-sections HVQDIS (NLO-DGLAP) describes OK

black $K2\pi$ blue $K4\pi$

bands - difft fragmentation functions

CASCADE : $\eta(D^*)$ better but above data at large p_T

F_2^{cc} Determine from D^* rate. Large extrapolation to full acceptance

NLO calcn. with gluon from fit to F_2 reasonable Strong rise at low *x*, high Q^2

Steeper Q^2 dependence than F_2 charm contributes about 50% of scaling violation in F_2

 F_2^{cc} DGLAP v. CCFM

Smaller extrapolation factors using CCFM and smaller extracted F_2

 F_2^{cc}/F_2 approaches 4/11 at low x and high Q^2 (large errors)

*D** production in e^+p less than in e^-p Effect at high Q^2 and high x

D^* in diffractive DIS

Models of diffraction

Resolved Pomeron models

Perturbative QCD models

Charm production probes gluon content of Pomeron

- RAPGAP
- ACTW: options quark dominated or gluon dominated

gluon ladder or higher order processes

- RIDI
- RAPGAP (BJLW) options
 - cc or ccg
- SATRAP 'saturation model'

Sample model comparisons

cc and *ccg*

Charm finding at TeVatron: CDF two-track trigger. A step increase in quality

b-production

 e^+e^- annihilation: precise measurements: lifetime tag, high pt lepton, jet shape Beautifully understood production and fragmentation Astounding agreement with theory

b-production in *p*bar-*p* collisions

Updated theory: Peterson frag tuned for LL theory update FONLL $\sigma(data)/\sigma(theory) = 1.7$ (was 2.9) No contradiction.

CASCADE fits D0 & CDF data

High *b*-tagging efficiency allows correlation studies of production mechanism

lowest order

flavour excitation

gluon splitting

CDF: Study angular differences in events with two *b*-tags

b-production in pN collisions

The result shows good agreement with recent calculations beyond NLO

R. Bonciani *et al.* (2002), NLO+NLL with latest MRST PDF Nucl.Phys.B529 (1998) N. Kidonakis *et al.* (2001), NLO+NNLL Phys.Rev D64 (2001) 114001-1

Kreuzer-ICHEP 2002

Open beauty production at HERA

Beauty in photoproduction

 $Q^2 < 1, 0.2 < y < 0.8, p_t^{\mu} > 2.5, -1.6 < \eta_{\mu} < 2.3$ 2 or more jets with $p_{T,1(2)} > 7(6) |\eta_j| < 2.5$

98 pb⁻¹

Result: Total dijet cross-section $\sigma(ep \rightarrow bb \rightarrow \text{ jet jet } X) =$ 733 ± 61 ± 104 pb NLOQCD(FMNR) 381⁺¹¹⁷-78 pb

 $Q^2 > 2, 0.05 < y < 0.7, p^{\mu} > 2, 30^{\circ} < \theta_{\mu} < 160^{\circ}$ jet with $E_T^{\text{Breit}} > 6 -2 < \eta_{\text{LAB}} < 2.5$

Shape well described by RAPGAP MC (LO, LL higher orders, JETSET hadr.)

Beauty in Deep Inelastic Scattering (3) First differential distributions for *b* in DIS

Open beauty production at HERA 3) *D**µ correlations

Charm production

opposite hemisphere & unlike-sign charge (cut on $\Delta r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$) same hemisphere, unlike-sign opposite hemisphere, like-sign opposite hemisphere, unlike-sign

$D^*\mu$ production

b-production at HERA. Compare to NLO QCD

New Results New method - $D^*\mu$

PHP - data above NLOQCD DIS - ?

Measurements in different kinematic regions. Model assumptions needed to compare

HERAII:

H1 - new fwd Si tracker + trigger ZEUS - new SVX

 $\gamma \gamma \text{ collisions } (e^+e^- \to e^+e^-ccX, e^+e^-bbX)$

 $p_{\rm T}^{\rm rel}(e)$

 $p_{\rm T}^{\rm rel}(\mu)$

$\gamma \gamma \rightarrow c c \overline{c} X, b \overline{b} X$ results

 $\sigma(e^+e^- \to e^+e^-ccX)$ agrees with NLO incl. resolved γ contribution $\sigma(e^+e^- \to e^+e^-b\bar{b}X)$ lies well above NLO

Summary

The quality of the data is improving fast new techniques at HERA and TeVatron.

- **Charm:** fragmentation at HERA is like at LEP
- PHP: evidence for charm in photon
- DIS: goodish agreement with NLO DGLAP exploring DGLAP v. CCFM

Beauty:LEP - precision! Theory & data agree astoundinglyTeVatron 70% discrepancies to theory regarded as progressHERA:new techniques and better acceptance but positionvis-à-vis theory unclear. Much work needed

HERA: upgrade promises better *c* and *b* ID. TeVatron: will greatly improve *c* and *b* production dynamics