31st International Conference on High Energy Physics

Amsterdam, The Netherlands 24th – 31st July 2002

QCD at high energy (experiments)

K. Long Imperial College London

Mission statement

- QCD: Theory of quarks and gluons
- <u>Ambition:</u> develop complete and quantitative understanding of QCD in *all* kinematic regions
 - Precise measurement of α_s and colour factors
 - ◆ Proton structure and pQCD: Structure functions, evolution; gluons → Pomeron transition
 - Compile extensive 'library' of precise measurements to compare with predictions and catalyze theoretical developments

Plan of the talk:

- Measurement of α_s and colour factors
- Proton and photon structure
- Diffraction
- Dijets in photoproduction

Apology:

Short talk covering broad, vibrant field: I apologise for not being able to show all important results.

$\alpha_{\rm S}$ and colour factors from e^+e^-

$\alpha_{\rm S}$ and colour factors from e^+e^-

Additional constraints:

- Ratio of multiplicity in gluon and quark jets (DELPHI)
- β-function
 determined in RGI
 analysis (DELPHI)

Note: DELPHI *R*₄ constraint is **included in 'DELPHI combined'. Not shown for clarity.**

$\alpha_{\rm S}$ from event shapes in e^+e^-

 $\alpha_{\rm S}(M_Z) = 0.1198 \pm 0.0047$ (LEP combined)

 $\alpha_{\rm S}(M_Z) = 0.1212 \pm 0.0017(\text{stat.})^{+0.0023}_{-0.0031}(\text{sys.})^{+0.0028}_{-0.0027}(\text{th.})$

$\alpha_{\rm S}$ from jet rates in $p\bar{p}$

Deep inelastic scattering a high Q^2

DIS at high Q^2

Neutral current

HERA Neutral Current

• Measurement of valence quarks at high Q^2

• Needs HERA-II

Proton structure

QCD anal. of Sfns

• Data well described by NLO QCD: DGLAP evolution:

$$\frac{dF_2^{\text{em}}}{d\ln Q^2} = \frac{\alpha_{\text{S}}}{2\pi} \left\{ \left[P_{\text{qq}} \otimes F_2^{\text{em}} \right] + \left[P_{\text{qG}} \otimes xG \right] \right\}$$

- Fit to determine PDFs and α_S: Emphasis on full treatment
 - of errors:
 - Correlated exp. Errors
 - Theory/param. errors

PDFs from NLO QCD analysis of S.Fns

$\alpha_{\rm S}$ and gluon from PDF fits $\alpha_{\rm S}$ determined in PDF fits is correlated with $\frac{dF_2}{d\ln Q^2} \propto \alpha_{\rm S} \otimes xG$ gluon density α_{s} values from PDF fits H1+ZEUS (20 xb(x)20 17.5 H1 NLO-QCD fit $O^2=20 \text{ GeV}^2$ $xg=a^{*}x^{b}^{*}(1-x)^{c}^{*}(1+d\sqrt{x+ex})$ CTEQ-6 (2001) FFN heavy-quark scheme total uncert. $Q^2 = 200 \text{ GeV}^2$ MRST-2001 exp. uncert.

Search for limit of validity of DGLAP

• Parameterise F_2 : $F_2 \cong cx^{-\lambda}$ • Fit for λ at fixed $Q^2 = 1.5 \, \text{GeV}^2$ $Q^2 = 2 \text{ GeV}^2$ $Q^2 = 2.5 \, \text{GeV}^2$ 0.5 Collaboration 0 $Q^2 = 5 \, \text{GeV}^2$ $Q^2 = 3.5 \text{ GeV}^2$ • H1 96/97 0.5 QCD fit (H1) _ **=** ∕ 0 ---- QCD fit extrap. 10^-2 10-4 10⁻² 10⁻⁴ ر (20) کر (20) ک X $F_2 = cx^{-\lambda}, x < 0.01$ * ZEUS slope fit 2001 prel. 0.4 H1 svtx00 prel. + ZEUS BPT H1 svtx00 prel. + NMC H1 96/97 + H1 svtx00 prel. 0.3 • H1 96/97 • Change in dependence of λ on Q^2 for $Q^2 \sim 1 \text{ GeV}^2$... 0.2 ZEUS&H1 Collabo • But at fixed Q^2 , λ shows no $\lambda = a \ln[Q^2/\Lambda^2]$ 0.1 II I extrapolation dependence on x 0 10^{-1} 10^{2}

10

 Q^2 / GeV^2

Inclusive jet cross section in $p\bar{p}$

- **Tevatron jets:**
- QCD at very high scales
- Partons at high x and very high Q^2
- D0: inclusive jet cross section as a function of pseudorapidity

$$=-\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

 NLO QCD gives good description of E_T and η dependence

Inclusive jets in pp

• **CTEQ/MRST groups: inclusion of D0 data in global fit** to determine parton distributions

Main difference in new fits is enhanced gluon at high x

Photon structure

- QCD evaluated with NLO PDFs (GRV-HO) describe data at ~20% level
- Fit to F_2^{γ} for α_s : $\alpha_s = 0.1198 \pm 0.0054$

[Albino et al.]

PDF (g) uncertainty?

Diffraction in *ep* **DIS**

$$\frac{d^4\sigma}{d\beta dQ^2 dx_{IP} dt} \approx \frac{2\pi\alpha^2}{\beta Q^4} Y_+ F_2^{D(4)}$$
$$F_2^{D(4)} (\beta, Q^2, x_{IP}, t)$$

Two techniques:

- Exploit absence of hadronic energy flow in forward direction – 'rapidity-gap' selection.
- Tag scattered proton to determine *t* dependence:

Inclusive diffraction: interpretation

Factorisation (Collins)

$$\sigma_i(x_{IP},t;\beta,Q^2) \sim q_i^{\text{Diff}}(x_{IP},t;\beta,Q^2) \otimes \hat{\sigma}_{\gamma^*q_i}(\beta,Q^2)$$

Data consistent with 'Regge' factorisation: $\sigma_r^{D(3)} \sim f_{IP/p}(x_{IP},t) \bullet F_2^{IP}(\beta,Q^2)$ $f_{IP/p}(x_{IP},t) = \frac{\exp(-b|t|)}{x_{IP}^{2\alpha(t)-1}}$

 $(1-x_{IP})P$

Р

- Good description of data
- Positive scaling violations (β < 0.6) → diffractive PDFs are gluon dominated

Diffractive parton densities

Predictive?

0.2

0.4

0.8

0.6

Inclusive diffraction: transition to low Q^2

- Virtual photon fluctuates into a qq (or qqg) state
- qq
 q
 (or qq
 qq
 g) dipole scatters
 elastically from proton
- Xsect. plateaus when dipole size ~ proton size

- Model gives reasonable description of data
- $q\bar{q}g$ contribution dominates

Dijet production in photoproduction

 $x_{\gamma}^{\text{obs}} = \frac{E_T^{\text{jet1}}e^{-\eta^{\text{jet1}}} + E_T^{\text{jet2}}e^{-\eta^{\text{jet2}}}}{2yE_e}$

Dijet production in γ*p*

Sensitivity to γ-PDFs?

• Data described by NLO QCD for $x_{\gamma} < 0.8$ in both $E_{T,max}$ bins • ZEUS data falls more slowly with E_T^{jet1} than

NLO QCD

Dijet production in γ*p*

Sensitivity to jet cuts

ZEUS

Dijet cross section: resolved enriched versus $E_{T}^{jet2,cut}$

• LL MC (HERWIG) describes SHAPE

 NLO calculation gives reasonable normalisation, but SHAPE requires NNLO

Conclusions

- New and updated meas. of α_S → 1-5%. Many techniques.
- Fundamentals of QCD 'check out': $\alpha_{\rm S}(Q^2)$, colour factors.
- NLO QCD analyses have determined PDFs with precision.
 Data and theory (nearly) ready for NNLO
- Low Q², low x inclusive DIS and diffraction – fertile fields. New data, many new ideas.

Conclusions

- Jet and heavy flavour production: NLO gives good *qualitative* description, require expt¹ and theor¹ progress to extract *quantitative* information
- Eagerly awaiting *large* data sets from HERA, TeVatron
- Now, more than ever, require diverse programme of measurement and interpretation
- In partnership we (theorists, phenomenologists and experimentalists) can achieve our ambition!

Many thanks to all who helped me prepare this talk. Especially, K. Nagano, O. Gonzalez, A. Tapper and E. Laenen.

