Vector Meson Production at HERA

Jan Figiel Institute of Nuclear Physics, Cracow

On behalf of ZEUS and H1 collaborations

- Introduction
- New results on elastic photo- and electroproduction
- Pomeron trajectory
- Looking for universality in VM production
- Proton-dissociative electro- and photoproduction
- Helicity studies
- Summary and Outlook

Hadron Structure 02, Herlany, Slovakia, September 22 - 27, 2002

HERA ep collider

Half of the HERA I luminosity collected in 1999 - 2000 ! Only part of the data analysed so far!

Diffractive vector meson production at HERA

VM Vector Meson

 $Q^2 \qquad \gamma^*$ virtuality

t

W CM energy of γ^* p system

 $0 < Q^2 < 70 \text{ GeV}^2$

ρ⁰, ω, φ, J/ψ, ψ', Υ

20 < W < 290 GeV

(4-mom. transfer)²

 $0 < |t| < 20 \text{ GeV}^2$

At HERA we control all these variables!

Vector Meson Detection

Schematic view of the ZEUS detector: $\rho \rightarrow \pi \pi$ KK charged tracks - VM (+positron in DIS) BCAL Π^+, κ^+, ι^+ energy deposits in calorimeters p DISS. SYSTEM • extra detectors: PROTONS POSITRONS for protons, CTD proton remnants, PHOTOPRODUCTION photoproduction tagger TAGGER ГЦП $\frac{44 \text{ m}}{2} \text{ z}$ П, к, Г

Elastic ρ^0 photoproduction in H1 detector with a leading proton detected in the Forward Proton Spectrometer

Vector Meson Signals

Hadron Structure 02

Diffractive Vector Meson Production Models

 $VDM + Regge: \gamma^* p \rightarrow Vp = (\gamma^* \rightarrow V) \times (Vp \rightarrow Vp)$

- $Vp \rightarrow Vp =$ "soft" interaction \Rightarrow Pomeron exchange
- $\alpha_P(t) = \alpha_0 + \alpha' t = 1.08 + 0.25 t$ (Donnachie-Landshoff)

•
$$d\sigma/dt \sim e^{b(W)t}$$
, $b \sim R_{int}^2$

- $b(W) = 2(b_{VM} + b_{p} + \alpha' \ln (W^{2})) \implies \text{shrinkage}$
- $\sigma_{Vp} \sim W^{4(\alpha_0 1)}/b(W) \sim W^{\delta}$, $\delta \approx 0.22 \Rightarrow$ weak energy dependence
- S Channel Helicity Conservation VM retains γ^* helicity

Diffractive Vector Meson Production Models

BUT: "large" Q^2 , M_{VM} or |t| = "small" VM and interaction size \Rightarrow "hard" interaction

 \Rightarrow perturbative QCD applicable:

VM = qq dipol, exchange of \geq 2 gluons (color singlet - QCD Pomeron)

• Steeper rise of σ_{Vp} with *W*, ($\sigma_{Vp} \sim [x g(x, Q^2)]^2$, $x \approx Q^2/W^2$)

- Weaker t dependence, less shrinkage with W
- -dominant longitudinal γ^* polarisation
- possible SCHC violation

VM at HERA: transition between soft and hard regime \Rightarrow testbed for pQCD scales: M_{VM}^2 , Q^2 , |t|

Elastic ρ^0 photoproduction with a leading *p*

Elastic J/ ψ photoproduction

Large M_{ψ} is a hard scale: pQCD in action \Rightarrow steep rise of cross section with *W*.

The pQCD-based models reproduce the data.

J/ψ photoproduction is "hard"!

VM cross sections in photoproduction

Increasing M_{VM} : transition from soft to hard regime.

Jan Figiel

Elastic J/ ψ photoproduction

Simultaneous W and t dependence $d\sigma/dt \sim (W^2)^{(2\alpha(t)-2)} \Rightarrow$ effective "Pomeron" trajectory

"Soft" Pomeron alone is excluded by the data!

Elastic $\psi(2s)$ photoproduction

cc radial excitation; optical interpretation $\Rightarrow b_{\psi(2s)} > b_{J/\psi}$ BUT: QCD + $\psi(2s)$ wave function (with node) \Rightarrow

- $b_{\psi(2s)} \leq b_{J/\psi}$
- $\sigma_{\psi(2s)} / \sigma_{J/\psi} < 1$

QCD + wave function \Rightarrow OK!

Elastic ρ^0 electroproduction

Cross section $\sim W^6$ in Q² intervals ZEUS H1 ρ electroproduction $[\mathbf{qu}]_{\mathbf{q}}^{\mathbf{q}} \leftarrow \mathbf{q}_{\mathbf{z}}^{\mathbf{z}}$ $\sigma (\gamma^* p \rightarrow \rho p) \ [nb]$ $Q^2[GeV^2]$ δ 0.16±0.06 $Q^2 (GeV^2)$ • H1 preliminary 0. 10^{2} 0.12±0.03 0.47 9.5 0.33±0.05 0.35±0.05 14.5 2.4 3.5 0.56±0.10 10^{2} $W^{0.80}$ 0.52±0.09 6.0 22.0 8.3 10 0.46±0.10 13.0 10 0.88±0.28 W^{0.96} 35.0 27.0 1 **ZEUS 94** $W^{1.08}$ ZEUS 95 ZEUS (prel.) 96/97 1 10 150 175 200 50 0 25 75 100 125 60 70 80 90100 200 50 W [GeV] W [GeV]

• $Q^2 \approx 0$: $\delta \approx 0.2$, weak *W* dependence - soft regime

• Large Q^2 is hard scale: large δ - steeper *W* dependence, as expected from color singlet exchange!

Elastic ρ^0 electroproduction

• power δ increases and slope **b** (\Rightarrow transverse size of qq pair!) decreases with Q²

Q² controls soft - hard regime transition!

Elastic J/ ψ electroproduction

- Steep rise of $\sigma_{J/\psi}$ ($\delta \ge 0.65$) depends weakly on Q^2 , large M_{ψ} is sufficient hard scale
- pQCD models using gluon densities are ~OK.

Pomeron trajectory...

 J/ψ , ρ^0 photoproduction, ρ^0 electroproduction

V	$lpha_{I\!\!P}(0)$	$lpha'_{I\!\!P}({ m GeV}^{-2})$
$\rho^0, (Q^2 \simeq 0)$	$1.096 {\pm} 0.021$	0.125 ± 0.038
J/ψ (H1)	$1.27{\pm}0.05$	$0.08 {\pm} 0.017$
J/ψ (ZEUS)	$1.200{\pm}0.009^{+0.004}_{-0.010}$	$0.115{\pm}0.018^{+0.008}_{-0.015}$
ρ^0 (ZEUS, DIS)	$1.14{\pm}0.01^{+0.03}_{-0.03}$	$0.04{\pm}0.07^{+0.13}_{-0.04}$

 $\alpha_{P}(0)$ increases with M_{V} (Q² ?) $\alpha'_{P} < 0.25 \text{ GeV}^{-2}$ ("soft" Pomeron)

"Scaled" cross sections

VDM+Regge: ratio: $\sigma_{VM}/\sigma_{tot}(\gamma^* p) \sim W^{(2\alpha(0)-1)}/b = W^{(2\alpha(0)-1)}/(b_0 + 4\alpha' \ln W) \Rightarrow ???$

• $\sigma_{\rho}/\sigma_{tot}$ does not depend on W...(?)

$$\sigma_{\psi}/\sigma_{tot}$$
 clearly rises with $W...(?)$

Proton-dissociative ρ^0 electroproduction

At "small" |t|: $d\sigma/dt \sim exp(-b|t|)$ slope $b \sim (interaction size)^2$

$$b_{\rm pdiss.} < b_{\rm el.} \Rightarrow$$

proton-dissociative interaction - scattering off parton!

Proton-dissociative VM photoproduction at large |t|

Proton-dissociative VM photoproduction at large |t|

Forshaw & Poludniowski model:

- BFKL Pomeron
- coupling to single parton
- non-relativistic VM wave function (not proper for light VM)
- 3 parameters fitted to ZEUS data

BFKL exchange describes the data well

t is a hard scale...

Proton-dissociative J/ψ photoproduction at large |t|

 $\gamma\,p\to J/\psi\,Y, ~|t\!|<20~GeV^2~(!)$

BFKL exchange: rise of $d\sigma/dt$ with energy (in contrast with 2-gluon exchange!)

Indication of BFKL ?!

Proton-dissociative VM photoproduction at large |t|

Cross section ratios in function of:

- -t for p-diss. photoproduction
- Q² for elastic electroproduction

The ϕ/ρ ratios approach SU(4) value, as well as ψ/ρ in photoproduction

The cross section ratios rise faster with -t than with Q^2

|t| and Q² are NOT equivalent scales!

Proton-dissociative VM photoproduction at large |t|

Effective slope of Pomeron trajectory α

To avoid large correlated systematic errors "normalized" (*W*,*t*) distribution:

 $d\sigma/dt/d\sigma/dt(t=t_0) = W^{4\alpha'(t-t_0)}$

With rising *-t* transition from soft to hard regime...

Helicity amplitudes $T_{\lambda VM \lambda \gamma}$

15 spin density matrix elements:

 $l^{lphaeta}_{ij} \sim T_{\lambda 1' \lambda 2'} T_{\lambda 1 \lambda 2}$ T_{00} , T_{11} : no helicity flip T_{01} , T_{10} : single flip T_{1-1} : double flip

VDM legacy: S-Channel Helicity Conservation

pQCD: quantitative predictions on transitions between γ^* and VM helicity states,

in particular dominance of longitudinal γ^* polarisation and small SCHC breaking Experiment: approximate SCHC (small breaking)

R increase with Q^2 as predicted by pQCD but does not depend on W...

Elastic ρ^{0} electroproduction: $1 < Q^{2} < 60 \text{ GeV}^{2}$

ρ⁰: ZEUS/EPJ C12 (2000) 393 H1/PL B483 (2000) 360 φ: H1/EPJ C13 (2000) 371 $Im\{r_{1.1}^6\}$ • ZEUS 1995 $Im\{r_{10}^6\}$ **₽ O** H1 r⁵ $Re\{r_{10}^5\}$ r⁵00 $r_{00}^5 \neq 0$ **r**⁵₁₁ $Im\{r_{1,1}^2\}$ 0 1 $Im\{r_{10}^2\}$

+**●**∔

0.1

0

0.2

0.6

0.7

$$T_{00}^{5} \sim T_{00} T_{01}^{*} + T_{01} T_{00}^{*} \neq 0$$

 $\Rightarrow~\gamma_{\scriptscriptstyle T} \rightarrow~\rho_{\scriptscriptstyle L}~$ transition observed

SCHC breaking predicted by pQCD model (Ivanov, Kirschner): qq interaction with proton \Rightarrow helicity flip

 r_{1-1}^{1}

 r_{00}^{1}

 \mathbf{r}_{11}^{1}

r⁰⁴ 1-1

r₀₀

-0.4

 $Re\{r_{10}^{04}\}$

-0.3

-0.2

-0.1

 $Re\{r_{10}^1\}$

0.8

Elastic and p-diss. ρ^0 electroproduction: *t* dependence of SDME

Elastic and p-diss. ρ^{0} electroproduction: *t* dependence of SDME

These SDME are dominated by single and double flip helicity amplitudes and exhibit SCHC violation at larger |t|, in accord with pQCD expectation.

Summary and Outlook

- Continued analysis of HERA I data
 - \Rightarrow new results of higher precision, in large kinematic region
- Production of vector mesons: non-perturbative perturbative QCD playground
- At large M²_{VM}, Q² or |t| the VM production shows expected features of a short distance (hard) process: steep rise of the cross section with energy, harder |t| distribution, SCHC breaking
- Universality in VM production still an open question

Summary and Outlook

- $\cdot |t|$ is confirmed as a hard scale, however not equivalent to Q^2
- In the presence of a hard scale perturbative QCD describes many aspects of the data there is room for improvement however
- Outlook:

Still ongoing HERA I data analysis, HERA II - 1 fb⁻¹ luminosity expected and upgraded detectors \Rightarrow extension of the kinematic range to higher Q^2 and |t|