H1 and ZEUS after the Luminosity Upgrade of HERA

· HERA I

- · HERA luminosity upgrade
 - Concept
 - Problems
 - Status
- · Detector upgrades of H1 and ZEUS
- · Outlook

HERA I Performance until end of 2000

HERA-Luminosität 1992-2000

Kinematic Range and Highlights from HERA I

Significant increase in kinematic range beyond fixed target experiments

Highlights from HERA I (1992-2000)

- proton structure & QCD
- · low x physics
- · photon structure
- physics beyond the Standard Model

HERA II

- · Luminosity upgrade
- Spin rotators for ZEUS and H1
 ⇒ longitudinally polarized electrons/
 positrons
- · H1 and ZEUS detector upgrades

Physics at HERA II

 Searches high pt leptons stop LQ, CI v*, e* 	 High x, low Q² F_L α_s
 High x, high Q² xF₃ uZ, dZ couplings u,d densities 	• QCD jets bottom charm
W _R	 Diffraction

In order to complete HERA program need

- integrated luminosity of 1 fb⁻¹
- · shared ≈ equally between
 - e⁻p and e⁺p
 - and with both polarisation states

Concept of new Interaction Regions

Stronger focusing of protons by moving proton quadrupoles closer to IR : $26m \rightarrow 11m \Rightarrow$

- early beam separation by superconducting magnets inside detectors
- reduced e-bending radius: 1200 m → 400 m
 increased synchrotron radiation power: P_{tot} = 28 kW @ 58mA , E_{crit} ≤ 150keV
- radiation has to pass the detector and is absorbed at 12, 19 and 25 m behind the experiments

HERA Parameters after the Upgrade

Parameters	before Upgrade		after Upgrade	
	e-ring	p-ring	e-ring	p-ring
E [GeV]	27.5	920	27.5	920
l [mA]	50	100	58	140
N _{ppb} [10 ¹⁰]	3.5	7.3	4.0	10.3
n _{bunch}	174	174	174	174
β * [m]	0.90	7.0	0.63	2.45
β * [m]	0.60	0.5	0.26	0.18
ε _x [nm]	41	5000/γ	22	5000/γ
ε _y /ε _x	10%	1	18%	1
σ _x ; σ _y [μm]	190 ; 50	190 ; 50	120 ; 30	120; 30
σ _z [mm]	12	130	12	130
Δv_x	0.012	0.0013	0.027	0.002
Δv_y	0.03	0.00035	0.041	0.0005
L [cm ⁻² s ⁻¹]	1.5 x 10 ³¹		7 x 10 ³¹	

New machine components:

- 448 m new vacuum beam pipe
- 4 superconducting magnets
 BNL, Brookhaven
- 54 new normal conducting magnets
 - Efremov Institute, St. Petersburg
- · 2 spin rotators

Spin Rotators in HERA

Rotator down \rightarrow positive helicity

Spin Rotators in HERA

NR24

New Superconducting Magnets in the Experiments

end can with He supply lines

superconductor positioning precision 0.01mm

- combined function magnets including dipole, quadrupole, skew dipole, skew quads, sextupole
- very tight space requirements (ø <180 mm)
 ⇒ super conducting magnets
- designed and constructed at BNL
- complicated movable supports needed inside detectors (forces on LAr cryostat)

Achievements and Status

Sep 00 - Jul 01	Shutdown for installation
Aug-Sep 01	Recommissioning of both HERA rings
Oct 01	Luminosity commissioning
Nov-Dec 01	Background studies, beam based alignment: I _{e+} < 2mA – aperture limitation identified
Jan-Mar 02	Installation of additional collimators, widen tight apertures
Mar-Apr 02	Restart ep operation
Apr 02 - now	Colliding beams with increasing intensities Accelerator & background studies, beams for HERAb/Hermes
	- background in sensitive detector components (tracker & Si) limits beam currents to $I_p \times I_{e+} \approx 600 \text{ mA}^2$ (design 8000 mA ²)

- reach design specific luminosity at low bunch currents

- reach L = 8.9×10^{30} cm⁻²s⁻¹ (design 7×10^{31} cm⁻²s⁻¹)

Challenge: Synchrotron Radiation

Concept:

- \cdot no hits of direct synchrotron radiation on beam pipe
- use combination of downstream absorbers (12, 19, 25m)
- and integrated collimators to shield against backscattered synchrotron radiation

Need rather complicated beampipe (steel) to accomodate 3 different beams

Challenge: Proton Background

Mechanism:

- · desorption by synchrotron radiation \Rightarrow dynamic pressure increase p-upstream
- debris of p-restgas interactions hits aperture limitations (ie synchrotron masks C5A & C5B)
 - tolerable I_{CTD} @ HERA design currents requires ≈ 5 x better vacuum around IPs

Detector Upgrades

Mandatory for H1 & ZEUS:

luminosity detector upgrade

- · see high load of synchrotron radiation \Rightarrow need radiation hard γ detector
- $\cdot\,$ cope with bunch to bunch pile up

Many upgrade projects

with emphasis on enhanced capabilities for

- tracking (in forward direction)
- triggering (data taking rate ≈ constant)

Design goals

- three spatial measurements per track in two projections
- polar angle coverage 10°-170°
- \cdot <20 μm intrinsic hit resolution for normal incidence
- high efficiency (>97%)

Constraints

- \cdot elliptical beam pipe
- $\cdot\,$ CTD inner diameter 320mm
- \cdot 96 ns bunch crossing time

ZEUS Micro Vertex Detector MVD

H1 Silicon Detector Upgrade

H1 successfully operates CST and BST since 1997

Upgrade

- \cdot adapt to new elliptical beam pipe geometry
- backward region BST
 - rearrange existing BST: 6 u/v planes
 - add 4 planes with pad detectors for triggering
- central region CST
 - radiation damage observed
 - radiation hard readout electronics for CST
- forward region FST ← new
 - add 5 u/v planes
 - add 2 r planes

H1 Forward Silicon Tracker FST

single wheel

full detector

FST Performance

next step: alignment

Triggering at HERA II

HERA Upgrade:

- higher background from synchrotron radiation and particle background
- larger physics event rates but output rate \approx constant (high E_T scales are safe)

Need also improvements for trigger:

- \cdot higher redundancy \rightarrow better background rejection
 - H1: replace central inner proportional chamber CIP by new one with 5 instead of 2 layers optical readout of of 8500 pads for L1 (2.3 µs) decision

higher selectivity

ZEUS General Track Trigger (GTT): new second level trigger based on PC farm, input from:

- micro vertex detector MVD
- central track detector CTD
- straw tube tracker STT

H1 Fast Track Trigger (FTT)

- input from Central Jet Chamber CJC

Fast Track Trigger FTT

\cdot Level 1: 2.3 μs

- signal digitization
- finding track segments from hits
- coarse track linking for L1 trigger signal
- \cdot Level 2: 22 μs
 - track segment linking
 - fitting track parameters (3D)
 - trigger decision based on basic event properties
- Level 3: ≈100 µs (processor board farm)
 - identification of particle decays
- \cdot makes extensive use of content addressable memories (CAM)
- $\cdot\,$ only possible with new generation of programmable electronics
 - high density FPGAs
 - DSPs
- \cdot performance approaches offline reconstruction in precision

H1 Very Forward Proton Spectrometer VFPS

- $\cdot\,$ measure diffractively scattered protons
- $\cdot\,$ use proton bending magnets as spectrometer
- \cdot 2 Roman pots with fibre trackers
- high acceptance for small x_P and $0 \le t \le 0.5 \text{ GeV}^2$
- $\cdot\,$ ready for installation spring 2003

Summary & Outlook

Ambitious luminosity upgrade project finished

- · after difficult start up HERA running reasonably well
- experiments presently still suffer from severe background preventing HERA to operate at design currents
 - synchrotron radiation \rightarrow optimise shielding & absorber coating
 - proton background \rightarrow improve vacuum: beam scrubbing (need 30Ah), better pumps

Next steps

- $\cdot\,$ demonstrate design specific luminosity at design bunch currents
- $\cdot\,$ demonstrate longitudinal polarisation with new spin rotators
- $\cdot\,$ exploit further measures to reduce backgrounds
- \cdot take 5-10 pb⁻¹ (polarised ?) until 1.3.2003

Shutdown 2003

- · implement modifications for background reduction
- repair of several detector components
- install Very Forward Proton Spectromater VFPS
- \cdot install new LPOL

2003-2006 collect 1 fb⁻¹ of data