QCD and Hadron Structure

- Quark and hadron masses
- Measuring proton structure in DIS
- Proton structure and the hadronic final state
- Proton spin
- Low Q² and x
- Summary

Quark and hadron masses

- Ratio of the mass of the parts to the mass of the whole:
 - Positronium $2 \times 511 \text{keV}/1022 \text{keV} = 1$

- Bottomonium $2 \times 4.2 \,\text{GeV}/9.5 \,\text{GeV} = 0.9$
- Proton

 $(2 \times 3 \,\text{MeV} + 6 \,\text{MeV})/938 \,\text{MeV} = 0.01$

• Pion (3 MeV + 6 MeV)/135 MeV = 0.07

Coupling constants

• QED, screening, polarization of vacuum leads to $\alpha \uparrow$ as $Q^2 \uparrow$

QCD, anti-screening, polarization of vacuum leads to $\alpha_s \downarrow$ as $Q^2 \uparrow$

Hadron structure

- Strong force confines quarks to small space.
- Uncertainty principle dictates $\Delta p \sim \frac{kc}{R_p} \sim \frac{200 \text{ MeV fm}}{0.8 \text{ fm}} \sim 250 \text{ MeV}$
- Quark energies $E \sim 250$ MeV.
- Quarks within proton highly relativistic, suggests lots of gluon radiation...
 - ...and yet all quarks and gluons conspire to ensure the proton's spin is $\frac{1}{2}$.

Timescales in DIS

Measuring hadron structure – Deep Inelastic Scattering

Measurements of $F_2(x,Q^2)$

ZEUS+H1

Steep rise of F₂(x,Q²) observed at low x as x decreases

Measurements of $F_2(x,Q^2)$

ZEUS+H1

ZEUS+H1

QCD and scaling violations

- If quarks dominate: $Q^2 \uparrow \Rightarrow F_2 \downarrow$ at a given x
- If gluons dominate $Q^2 \uparrow \Rightarrow F_2 \uparrow$ at a given x

QCD calculations using DGLAP equations

Given parton distributions at some Q_0^2 , determine how these evolve with Q^2 .

- Interference effects give rise to angular ordering of partons.
- **D**GLAP approximation: $\theta_1 < \theta_2 < \theta_3 \cdots$

 $\rightarrow k_{T1} < k_{T2} < k_{T3} \cdots$

QCD and scaling violations

- PDFs, e.g. gluon.
- Progress being made towards NNLO calculations.
- PDFs with complete error determinations available.

Jet production in DIS

Running of strong coupling

Running of α_s observed with one experiment.

Gluon distribution from final state

Spin structure measurements

- Use polarised target and polarised electron beam.
- Extract asymmetry

$$A = \left(\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}\right) / \left(\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}\right)$$

$$\approx \frac{\sum e_q^2 \left(q_+(x) - q_-(x)\right)}{\sum e_q^2 \left(q_+(x) + q_-(x)\right)}$$

$$\approx \frac{g_1(x)}{F_1(x)}$$

Measurements of $g_1(x,Q^2)$

Scaling violations, $g_1(x,Q^2)$

QCD radiation inside proton

Probability of g emission: $dP = \frac{\alpha_{\rm S}(k_{\rm T}^{2})}{\pi} C_{\rm A} \frac{dk_{\rm T}^{2}}{k_{\rm T}^{2}} \frac{dk}{k}$ Consider small k_T fluctuations $dk_T^2 \sim k_T^2$ and use dk/k = dy. Then have: $dP \sim \frac{\alpha_s(k_T^2)}{\pi} C_A dy$ For nth gluon $dP_n \sim \frac{\alpha_s(k_T^2)}{\pi} C_{eff} dy$

If treat g charges as random: $dP_n \sim \frac{\alpha_s (k_T^2)}{\pi} nC_A dy$

Variation of $F_2(x,Q^2)$ with x

- **BFKL result:** $x q(x, Q^2) \sim x^{-\delta}$ $\delta = 0.3...0.5$ Causes $F_2 \uparrow$ as $x \downarrow$ Does data show $F_2(x,Q^2) \sim x^{-\lambda}$? Study derivative $\frac{\partial \ln F_2}{\partial \ln F_2} = -\lambda$ $\partial \ln x$
- Data consistent with $F_2 \sim x^{-\lambda}$ for x < 0.01

Change of F_2 with x and Q^2

Behaviour at low Q^2

- What happens at the "ankle" at $Q^2 \sim 0.6 \text{ GeV}^2$?
- Amount of radiation decreases and becomes "resolution independent".
- Corresponds to length $r \sim 0.2...0.3$ fm.
- C.f. proton radius $r_p = 0.8$ fm.
- "Non-partonic" substructure within proton?
- Other evidence for this?

Rapidity gap events

Interaction with colourless component of proton

Masses of baryons from hyper-fine splitting

• Using $m_u = m_d = 363 \text{ MeV}, m_s = 538 \text{ MeV}$:

Baryon (mass in MeV)	Composition $(q = u, d)$	Predicted mass (MeV)
N(939)	qqq	939
Λ(1116)	qqs	1114
Σ(1193)	qqs	1179
Ξ(1318)	qss	1327
Δ(1232)	qqq	1239
Σ(1384)	qqs	1381
Ξ(1533)	qss	1529
Ω(1672)	SSS	1682

Summary

- HERA has uncovered a wealth of structure at low x in the proton.
- Continuing theoretical and experimental improvements in study of perturbative QCD, in regions of applicability obtain good description of:
 - Unpolarised and polarised structure functions.
 - Hadronic final state.
- Perhaps starting to see features in data in low Q² region that will help develop an understanding of confinement.