Charm Fragmentation and Dijet Angular distributions

Sanjay Padhi McGill University

X International Workshop on Deep Inelastic Scattering (DIS 2002)

Outline:

- * Introduction
- * Charm production & fragmentation
- * Universality of charm fragmentation
- **\Rightarrow** Dijet angular distributions in D^{*} photoproduction
- ★ Summary and outlook

Introduction

★ Fraction of energy transfer : $y = P.q/P.k \cong W^2/s$

★ No scattered electrons
★ $Q^2 \le 1 \text{ GeV}^2$ ★ 130 < W < 280 GeV

Charm Production and Fragmentation

Heavy Flavour (charm) Production :

- ***** Production of q \overline{q}
- * Development of Parton shower
- * Transition of partons to hadrons (Hadronisation)
- * Unstable hadrons decay (according to BR)

Experimentally ($c \rightarrow D$) Meson:

- Fragmentation Fraction $f(c \rightarrow D^{*+}) = 0.235 \pm 0.007 \text{ (LEP)}$
- Fragmentation Functions
- (e.g Peterson Fragmentation Function, Lund, Collins & Spiller ...)

Are these fragmentation fractions universal?

Page 3 of 15 1st May 2002 "X International Workshop on Deep Inelastic Scattering (DIS 2002)" Sanjay Padhi

Charm Production and Fragmentation

Charmed Mesons:

Vector State (V) $D^{*\pm} \rightarrow \text{spin 1}$ Pseudoscalar (PS) $D^0 \rightarrow \text{spin 0}$ $P_v = V/(V + PS)$

Simple spin counting : $P_v = 0.75$

The relative production of these two states is sensitive to non-perturbative effects in the hadronisation process, thus cannot be calculated exactly.

However there are several models

K. Cheung hep-ph/9505365 (1995) $P_v = 0.68$

E. Braaten et. al. Phys.Rev.D51(1995) 4819 $0.5 < P_v < 0.75$

Y. Q. Chen. Phys. Rev. D48 (1993) 5181 $P_y = 0.6$

Yi–Jin Pei, Z. Phys. C 72, 39 (1996) $P_v = 0.56$

Universality of Charm Fragmentation

Direct Production rates from charm fragmentation :

 $P_v = \sigma_{dir} (D^{*\pm}) / (\sigma_{dir} (D^{*\pm}) + \sigma_{dir} (D^0))$

Assuming :

a) $\sigma(D^{*0}) = \sigma(D^{*\pm})$

b) No sizable distortions from excited D mesons

Decay Modes: $D^0 \rightarrow K^- \pi^+ (+c.c)$ $D^{*+} \rightarrow (K^- \pi^+) \pi_s^+ (+c.c)$; π_s is a soft pion with low momentum

$$\sigma_{dir}(D^{0}) = \sigma_{tot}(D^{0}) - \sigma_{tot}(D^{\pm}) (1 + BR(D^{\pm} \rightarrow D^{0}\pi^{\pm}))$$

$$P_{v} = \frac{1}{(\sigma_{tot}(D^{0})/\sigma(D^{\pm}) - BR(D^{\pm} \rightarrow D^{0}\pi^{\pm}))}$$

$\mathbf{P}_{\mathbf{v}}$ measured from ZEUS data for \mathbf{D}^* and \mathbf{D}^0 mesons

Universality of Charm Fragmentation ?

Results consistent with universality of charm fragmentation fraction

QCD predicts that the angular distribution of the outgoing partons in resolved processes will be enhanced at high $|\cos\theta^*|$ with respect to direct photon processes. (Phys. Rev D40 (1989) 2844)

ZEUS Coll., Phys. Lett. B 384(1996) 401

ZEUS 1994

Is it true in case of charm?

ZEUS Coll., "*Dijet Angular Distribution in D* Photoproduction at HERA*". Paper 499, EPS HEP01, Budapest, Hungary, July 12–18, 2001.

What can we learn from this ??

Page 8 of 15 1st May 2002 "X International Workshop on Deep Inelastic Scattering (DIS 2002)" Sanjay Padhi

Monte Carlo generators

- PYTHIA, HERWIG (ISR, ME, FSR), DGLAP
- CASCADE
 - [ISR(CCFM) + BGF + FSR(From PYTHIA)]

 1) First indication of charm content of photon can be obtained by studying ...

Fraction of photon energy contributing to the production of two highest E_t^{jet} jets.

$$x_{\gamma}^{obs} = \frac{\sum_{jets} E_T e^{-\eta}}{2yE_e}$$

★ Both direct and resolved fractions are significant
 ★ Dominant part of the resolved is from "charm content of the photon" c-excitation.

★ Significant reduction of Resolved events observed due to Hard Cuts $M_{ii} > 18 \text{ GeV}$, $|\overline{\eta}| < 0.7$

★ PYTHIA, HERWIG and CASCADE in general can reproduce the shape

Page 11 of 15 1st May 2002 "X International Workshop on Deep Inelastic Scattering (DIS 2002)" Sanjay Padhi

Dijet angular distributions

2) Observation of g-propagator in resolved events.

Page 12 of 15 1st May 2002 "X International Workshop on Deep Inelastic Scattering (DIS 2002)" Sanjay Padhi

Dijet angular distributions

-3) <u>Study of various sub-processes with charm</u>

Page 13 of 15 1st May 2002 "X International Workshop on Deep Inelastic Scattering (DIS 2002)" Sanjay Padhi

Dijet angular distributions

ZEUS

Page 14 of 15 1st May 2002 "X International Workshop on Deep Inelastic Scattering (DIS 2002)" Sanjay Padhi

Summary and Outlook

- HERA provides wide spectrum of charm flavoured jet measurements
- \blacksquare Measurement of P_v is consistent with Universality of charm fragmentation.
- Angular distribution of direct and resolved photon events are significantly different, reflecting different spin of q/g propagator.
- Steep rise towards high $|\cos\theta^*|$ of resolved events \Rightarrow signature of gluon exchange
- Mild rise of $x_{y}^{OBS} > 0.75$ is consistent with q-exchange as predicted by QCD
- Measurement of unfolded cosθ*, with a D* tagged to a jet, gives a clear peak in the PHOTON direction (clear evidence of charm in photon).

A lot of interesting measurements related to charm fragmentation and charm content of the photon is going to come soon from HERA.