Charged Current Interactions in Deep Inelastic Scattering at ZEUS

DIS2002 Cracow

Sjors Grijpink (NIKHEF) on behalf of the ZEUS collaboration

Charged Current Interactions in Deep Inelastic Scattering at ZEUS

- DIS kinematics
- Charged Current event selection
- Charged Current cross sections
 - 98/99 e⁻p data (final results)
 - 99/00 e⁺p data
- results on M

Deep Inelastic Scattering Kinematics

- In this talk:
- 98/99 electron data
- 99/00 positron data

50

100

150

200

Days of running

50

40

30

20

10

CC in DIS

Electron scattering

- probe *u* valence
- positively charged sea

Positron scattering

- probe *d* valence
- negatively charged sea

cross section (L.O.)

$$\frac{d^2\sigma_{cc}}{dxdQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \times \begin{cases} \left[x(u+c) + (1-y)^2 x(\overline{d}+\overline{s})\right] & e^- p \to v_e X \\ \left[x(\overline{u}+\overline{c}) + (1-y)^2 x(d+s)\right] & e^+ p \to \overline{v_e} X \end{cases}$$

Event Selection (1)

CC signature:

 $ep \rightarrow v_{e} X$

Escaping Neutrino:

• Missing transverse momentum(P

Use Hadronic system for kinematics reconstruction: Jacquet Blondel Method

ep backgrounds:

- Photo production events
- Neutral Current events

Non ep backgrounds:

- Beamgas events
- Halo muon events
- Cosmic muon events

Sjors Grijpink, DIS2002

30 April – 4 May 2002, Cracow

Event Selection (2)

High
$$\gamma_0$$
 region ($\gamma_0 > 23^\circ$):

- Event vertex from tracking
- $P_{Tmiss} > 12 \text{ GeV}$

- Low γ_0 region ($\gamma_0 < 23^\circ$):
- Event vertex from CAL timing
- $P_{Tmiss} > 25 \text{ GeV}$

Event distributions CC 98/99 electron data

- e⁻p data (16.4 pb⁻¹)
 CC MC (CTEQ5D PDFs)
 background MCs
- a) missing transverse momentum
 b) P_{Tmiss} excluding forward cells
 c) E-P₇

d)
$$P_{Tmiss}/E_{T}$$

- e) angle of hadronic system
- f) number of good tracks
- g) Z position of vertex, high γ_0
- h) Z position of vertex, low γ_0

Final results CC 98/99 electron data

Charged Current cross section

$$\frac{d\sigma_{CC}}{dQ^2} = \frac{G_F^2}{4\pi} \times \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \times F(Q^2)$$

Cross section extraction

$$\frac{d\sigma_{Born}^{data}}{dQ^2} \left(Q_q^2\right) = \frac{N_{obs} - N_{bg}}{N_{MC}} \cdot \frac{d\sigma_{Born}^{SM}}{dQ^2} \left(Q_q^2\right)$$

from Monte Carlo simulation

- acceptance corrections
- bin–centering corrections
- radiative corrections

Final results CC 98/99 electron data

Sjors Grijpink, DIS2002

30 April – 4 May 2002, Cracow

Final results CC 98/99 electron data

Chiral structure of EW interaction:
e⁻p (W⁻): anti-particles helicity suppressed
e⁺p (W⁺): particles helicity suppressed

Helicity plot: Fix x, Plot $\tilde{\sigma}_{CC}$ versus $(1-y)^2$

$$\begin{split} \tilde{\sigma}_{CC}(e^{-}p) &= \left[x(u_v + u_s + c_s) + (1 - y)^2 x(\overline{d}_s + \overline{s}_s) \right] \\ \tilde{\sigma}_{CC}(e^{+}p) &= \left[x(\overline{u}_s + \overline{c}_s) + (1 - y)^2 x(d_v + d_s + s_s) \right] \\ \tilde{\sigma}_{\pm}(CC) &= \tilde{\sigma}_{CC}(e^{-}p) \pm \tilde{\sigma}_{CC}(e^{+}p) \end{split}$$

$$\Rightarrow \tilde{\sigma}_{-}(CC) = x u_{v} - (1-y)^{2} x d_{v}$$

- Intercept \rightarrow read off *u* valence
- Slope \rightarrow read off *d* valence

M from $d\sigma/dQ^2$

stat { ↓

10⁴

 $O^2 (GeV^2)$

stat \oplus syst

Summary

Charged Current cross sections for the 98/99 e⁻p data (final) and 99/00 e⁺p data

- $d\sigma/dQ^2$, $d\sigma/dx$, $d\sigma/dy$
- reduced cross sections $\,\tilde{\sigma}_{\scriptscriptstyle CC}\,$
- In agreement with SM over many orders of magnitude

Results on the M_w from fit to $d\sigma/dQ^2$

- 98/99 e⁻p data

 $M_{W} = 80.3 \pm 2.1 (stat.) \pm 1.2 (syst.) \pm 1.0 (pdf) GeV$