# Strange particle production at HERA



Stewart Boogert, Oxford University & ZEUS collaboration DIS2002, Krakow - Poland



#### Talk outline

# ${\rm K_S}^{0}$ and $\Lambda$ production in dijet photoproduction

Introduction

Photoproduction at HERA

 $K_{\text{S}}{}^{0}$  and  $\Lambda$  identification

Measurement definition

 $K_S^0$  production cross sections

 $\Lambda$  and  $\overline{\Lambda}$  production cross sections

#### $\phi$ (1020) production in DIS

Mechanisms of phi production Differential cross sections Hard QCD contributions  $\phi(1020)$  in the Breit frame

#### Conclusions

## Introduction

- After pions strange particles are the most copiously produced hadrons at HERA
  - Strange hadron production, particularly baryons, is not known to be well described by leading order Monte Carlo simulations
  - Is strange particle fragmentation universal? Is the production of strange particles correct in the current generations of Monte Carlo generators, e.g. HERWIG and PYTHIA?
  - String models: Strangeness suppression factor  $\lambda_s = p_s/p_{u,d}$
  - Are there any differences between strange hadron and anti-hadron production?
  - Strange particle production measurements at HERA lags behind those of LEP and heavy flavours at HERA
- Requiring a strange containing particle enhances the contribution from strange from the proton (or photon).
  - Possibilities of constraining strange sea of the proton ( $\phi$  mesons in DIS)

## **Photoproduction at HERA**

• Deep inelastic scattering kinematics

$$q = k - k' \qquad Q^2 = -q^2$$
$$x = \frac{Q^2}{2p \cdot q} \qquad y = \frac{p \cdot q}{p \cdot k}$$

- Photoproduction kinematics
  - Q<sup>2</sup> can no longer used to define the scale of the hard scatter instead the transverse energy of the jets is used
- Direct : photon couples directly to the hard sub-process
- Resolved : photon acts an extended source of partons



# Strange particle identification

- Strange selection
  - Identify events with a well separated secondary vertex
  - Pair of tracks with opposite charge.
- Jp Particle Lifetime/ Mass/ Main Decay 10<sup>-8</sup> s GeV length/ decay cm 0  $\pi^+\pi^-$ 0.89 2.68 0.497 Ks  $p^+\pi^ 1/2^{+}$ 1.112 2.63 7.89 Λ

- Backgrounds
  - Photon conversions
    - $\Rightarrow$  easily removed with a mass cut
  - Combinatorial
    - $\Rightarrow$  background subtract
- $\Lambda/\overline{\Lambda}$  separation
  - Assume highest momentum track is the proton
    - +ve  $\Rightarrow \Lambda$
    - - ve  $\Rightarrow \overline{\Lambda}$



#### **Measurement definition**



- Photoproduction  $- Q^2 < 1 \text{ GeV}^2 < Q^2 > \sim 3.10^{-4} \text{ GeV}^2$ 
  - 0.2 < y < 0.8
- Dijet (defined using  $K_T$  algorithm)
  - E<sub>T</sub>(jet 1, 2) > 10, 9 GeV
  - |η(jet)| < 2
- Strange particle kinematic region
  - $p_T(hadron) > 0.3 \text{ GeV}$
  - $|\eta(hadron)| < 1.5$
- Measure differentially in jet transverse energy
  - $K_{S}$ :  $E_{T}$ (jet 1) > 10, 16, 23 GeV
  - $\Lambda$  :  $E_{T}(jet 1) > 10, 18 \text{ GeV}$

## Strange particle signals



- Clear signals for  $K_S$ ,  $\Lambda$  and  $\overline{\Lambda}$
- K<sub>S</sub>
  - Large statistics
  - Low background
  - K<sub>S</sub> signal and background reasonably described by Monte Carlo models
- Λ (Λ̄)
  - Clean low background signal, but significantly lower statistics than K<sub>s</sub>
  - Background is not so well described by Monte Carlo models at high mass

# K<sub>s</sub><sup>0</sup> production



- K<sub>S</sub><sup>0</sup> differential cross sections in good shape agreement with both HERWIG and PYTHIA Monte Carlo generators:
  - As a function of jet transverse energy
- Familiar direct enhancement at higher jet energies

# K<sub>s</sub><sup>0</sup> production (cont)



- K<sub>S</sub><sup>0</sup> production tends to follow the event energy flow, kaons being aligned with the jets.
  - As the jet energy is increased the kaon production tends to more forward (proton beam direction)



## $\Lambda$ production



- Good agreement in shape between cross section and Monte Carlo (solid lines) normalised to data
- Fixing the normalisation of the Monte Carlo to the K<sub>s</sub><sup>0</sup> cross section (dashed lines)
  - HERWIG overestimates the measured cross section relative to K<sub>S</sub>
  - PYTHIA slightly underestimates relative to K<sub>S</sub>
- This effect persists at higher jet energies

# $\overline{\Lambda}$ production



- Similar picture for the  $\overline{\Lambda}$ .
  - Good shape agreement between data and Monte Carlo prediction
  - HERWIG overestimates the measured cross section relative to K<sub>S</sub>
  - PYTHIA slightly underestimates relative to K<sub>S</sub>
- $\Lambda$  cross section slightly lower than  $\Lambda$

# $\overline{\Lambda}$ production (cont)



- $\overline{\Lambda}$  production differential  $\eta(\overline{\Lambda})$  cross section
  - Good shape agreement between cross section and Monte Carlo predictions.
  - Qualitatively same variation in the cross section as with  $K_S^0$

# $\Lambda$ production (cont)



- Λ production differential η(Λ) cross section
  - Small difference between measured Λ cross section and Λ, possible statistical fluctuation?
  - Difference present at high jet transverse energy and at high  $x_{\gamma}^{obs}$
- Overall data agrees well with MC predictions

# $\phi$ (1020) production in DIS

- Motivation
  - Valence content of proton well established. |P> = |UUD>
  - Does the proton have a large strange (primordial) component?
- EMC data ('88) on polarised DIS
  - Net helicity of strange quarks at  $Q^2=5$  GeV

 $\Delta s(Q^2) = s^+ - \overline{s}^- = -0.11 \pm 0.01$ 

- Theoretical problem is that hard gluons cannot induce sea polarisation perturbatively for massless quarks
- NuTeV (`99) v DIS
  - $v+N\rightarrow\mu+charm+X$
  - W+s $\rightarrow$ c (cos<sup>2</sup> $\theta_c$ )

- Measure strange particles in neutral current DIS to constrain strange sea
  - $\mbox{K}_{\mbox{S}}$  and  $\Lambda$  measured previously by ZEUS and H1
  - $\phi(1020)$  nearly pure ss state
  - Not significantly produced by resonance decays
  - First measurement at HERA

#### Strange content of the proton

- s-quark distributions
  - CTEQ/MRS:

 $xs=Ax^{-\lambda}(1-x)^{\eta}p(x,s)$  at  $Q^2=Q^2\sim 1$  GeV<sup>2</sup> - GRV:

 $xs=x\bar{s}=0$  at  $Q^2=\mu^2 \sim 0.4 \text{ GeV}^2$ 

- GRV model for s(x,Q<sup>2</sup>)
  - strange generated radiatively
  - lower bound for strange sea
- GRV stronger rise as x decreases than CTEQ.



# $\phi$ (1020) production mechanisms

a)

- Main sources of φ(1020)
  - Hard QCD processes
    - Quark parton model (QPM), QCD Compton (QCDC) (dependent on strange sea)
    - Boson gluon fusion (BGF) (dependent on gluon content)
- Only soft QCD (parton shower) and hadronization
- Heavy flavour and cascade decays
  - less significant for  $\phi$  than for K and  $\Lambda$
- Direct interaction of γ<sup>\*</sup> with strange sea
  - leading mesons with large  $P_T(\phi)$
  - In Breit frame  $x_P = 2p^{Breit}/Q \approx 1$









#### $\phi$ meson selection

- φ(1020)
  - Nearly pure ss state.
  - Simple decay chain  $\phi \rightarrow K^+K^-$  (BR = 49.2±0.7%)
  - decays on primary vertex
- Reconstruct 2 opposite charge tracks assigned to primary vertex
  - Large combinatorial background from primary vertex tracks.

- Data sample
  - e<sup>+</sup>(27.5 GeV) + p(820 GeV)
  - 1995-1997 ZEUS data, luminosity 45.0 $\pm$ 0.7 pb<sup>-1</sup>
- DIS event selection
  - 10<Q<sup>2</sup><100 GeV<sup>2</sup>
  - 0.04<y<0.95
- $\phi$  daughter kinematic region
  - $p_T(K) > 0.2 \text{ GeV}$
  - |η(K)|<1.75
- - $p_{T}(\phi) > 1.7$
  - -1.7<η(K)<1.6

## Mass distribution for K<sup>+</sup>K<sup>-</sup>



1.05

1.06

## **Differential cross sections**

- Differential cross sections as functions of  $p_T(\phi)$ ,  $\eta(\phi)$  and  $Q^2$ 
  - Compared with LEPTO & ARIADNE using CTEQ5D ( $\lambda_s$ =0.3 and 0.2)
- Reasonable shape agreement with predictions from Monte Carlo
  - $\lambda_s$ =0.3 (LEP default) overestimates measured cross section
  - Better normalisation with  $\lambda_s$ =0.2; favoured by previous ZEUS and H1 measurements with K<sub>S</sub> and  $\Lambda$



## **Hard QCD contributions**

- cross sections as functions of  $p_T(\phi)$ ,  $\eta(\phi)$  and Q<sup>2</sup> compared with LEPTO  $(\lambda_s=0.3 \text{ and CTEQ5D})$ 
  - ss pairs from QPM and QCDC (green shaded band)
  - ss pairs from BGF (yellow shaded band)
- Relative contribution from hard QCD increases with p<sub>T</sub>(φ)



#### **Differential cross sections**

- Bjorken-x is sensible parameter to investigate the strange sea
  - sea quark density rises with diminishing x
  - BGF contribution also increases towards lower x as σ(BGF) ~ g(x)
  - Favours lower value of  $\lambda_s$
  - $\lambda_s = 0.2$  underestimates the measured cross section for x < 0.001



## **Hard QCD contributions**

- Same measured cross sections as previously
  - Both QPM and QCDC contributions rise with decreasing Bjorken x



## **Breit frame**



- Breit frame is natural way to separate the radiation of struck quark and the proton remnant
- Scaled momentum
  x<sub>p</sub>=2p/Q (p=|p|)
  Current region (p < 0)</li>
- Current region (p<sub>z</sub><0)</li>
  - QPM model

 $x_p(s) = 2p(s)/Q = 1$ 

- First and higher order QCD
  x<sub>p</sub>(s)≠1
- Target region

 $\Rightarrow$ 

– Maximum remnant momentum

Q(1-x)/2x

 $x_{p}^{max} \approx (1-x)/x >> 1$ 

## $\phi$ (1020) in the Breit-Frame

- φ cross section as function of scaled momentum (x<sub>p</sub>)
  - Monte Carlo uncertainties (including variation  $in\lambda_s$ ) indicated by shaded bands
  - Monte Carlo uncertainties  $x_p > 0.8$  are small
  - Inset M(K<sup>+</sup>K<sup>-</sup>) distribution for  $0.8 < x_p(\phi) < 1.1$ , with clear and well reconstructed signal
- Contribution from hard QCD processes dominant at x<sub>p</sub>>0.8 and in reasonable agreement with data using CTEQ5D parton densities



#### **Conclusions and summary**

- cross sections for  $K_s$  and  $\Lambda$  production have been measured over a wider kinematic region and more differentially than previously possible
- Overall, differential  $K_s$  and  $\Lambda$  production cross sections are in reasonable shape agreement with HERWIG and PYTHIA Monte Carlo simulations
- Monte Carlo predictions for Lambdas relative to the kaon production disagree with measured cross section
  - HERWIG prediction cross section is larger relative to Kaon production
  - PYTHIA predicted cross section is slightly smaller to Kaon production

#### **Conclusion and summary**

- Inclusive  $\phi(1020)$  meson cross sections have been measured for neutral current DIS with  $10 < Q^2 < 100 \text{ GeV}^2$
- The Monte Carlo predictions with  $\lambda_{\text{S}}$  = 0.3 overestimate the measured cross sections
- ZEUS measurements favour a lower value of  $\lambda_s \sim 0.2$
- The Monte Carlo predicted cross sections differ in shape from measurements and overestimate at low  $p_T(\phi)$ ,  $Q^2$  and x
- The measurements in the laboratory frame indicate a need for adjustment of the strange suppression factor
- In the current region of the Breit frame for  $x_P(\phi) > 0.8$  the measured cross section *clearly* indicate the contribution from the strange sea
  - Given current statistics the cross section is consistent with prediction using CTEQ5D