

Advanced Topics in QCD 2002 Beijing

August 5th – 9th

Eram Rizvi

Birmingham University (UK)

Status of the HERA Upgrade Project H1 and ZEUS Detectors Neutral and Current Processes Measurements of Proton Structure Functions Charged Current Measurements QCD Phenomenology

Summary

HERA Kinematics

Kinematic Variables

Resolving power

Negative of the four–momentum transfer between lepton and proton

$$Q^2 = -q^2 = -(k - k')^2$$

"Momentum fraction of proton carried by the struck quark"

$$x = \frac{Q^2}{2p \cdot q}$$

Inelasticity Momentum fraction of the lepton $y = \frac{p \cdot q}{p \cdot k}$

 $s = (p+k)^{2}$ $Q^{2} = s.x.y$ $W^{2} = (p+q)^{2}$

HERA Operation 1994 – 2000

	Luminosity (pb ⁻¹)		
	H1	ZEUS	
e ⁻ p	~16	~16	
e ⁺ p	~100	~110	

Luminosity Delivered

Eram Rizvi

Reasons For HERA Upgrade

- Well described by Standard Model:
- $\sigma \sim$ (coupling) x (propagator) x (PDFs) QCD EW theory
- Q^2 dependence of the NC and CC cross sections – statistically limited at high Q²
- Need more luminosity: aim for 1 fb^{-1} by 2006

5

New Possibilities at HERA II

- Addition of spin rotators gives new dimension to HERA physics.
- E.g. measure vector and axial couplings of light quarks to Z⁰.

• Increased luminosity through...

Ring	Electron		Proton	
Date	2000	2002	2000	2002
I (mA)	50	58	100	140
$\sigma_{\rm X}$ (µm)	192	112	189	112
σ_y (µm)	50	30	50	30
L (cm $^{-2}s^{-1}$)	17 x 10 ³⁰		76 x 10 ³⁰	

- Upgrade required addition of:
 - 448 m UHV system 3 M€.
 - Absorbers, instrumentation, control systems... 3 M€.
 - 56 NC magnets (Eframov Inst.)
 3 M€.

_	4 SC magnets (BNL)
	3 M€.

- Shutdown started Sept. 2000.
- HERA upgrade installation completed end July 2001.
- First collisions August 2001.
- Demonstrated Vertical Lumiscan H1 2 11 01 Fit: $\Sigma_v = 51 \, \mu m$ that specific luminosity 350 goals met 300 (necessary 250 focussing (me and 200 achieved). 150 100 50 -400 -200 208 Transverse beam profile

- First luminosity runs planned for November 2001.
- Very (too!) ambitious schedule.
- Initial luminosity low, sporadic and backgrounds large
- Many problems, large and small, compounded to make running very difficult.

- Example of large problem:
 - Failure of supports in section of p+ ring.
- Many minor failures
 - Example, corrosion of cooling water valve systems.

- Main problem for experiments large backgrounds due to:
 - Poor vacuum.
 - Synchrotron radiation.
- Solve former by "baking out" beam pipe.
- Solve latter by improving machine alignment, collimation systems.
 - Many new BPMs.
 - Improved monitoring and feedback.

- To carry out this programme, DESY moved manpower from TESLA to HERA early in 2002.
- Progress has been slow but steady since then, faster in last weeks.
- Record specific luminosity of ~1.7 x 10³⁰ measured for 28.5 mA p and 18 mA e⁺
- Integrated luminosity 240 nb^{-1} .

• "Kinematic peak" from recent HERA run...

Kinematic Range of HERA Data

-9th August 2002 5^{th}

The H1 Detector

The ZEUS Detector

Neutral Current Cross Sections

$$\frac{d^2 \sigma_{NC}^{\pm}}{dx dQ^2} = \frac{2 \alpha \pi^2}{Q^4 x} [Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 F_L]$$

$$\tilde{F}_{2} \equiv F_{2} - v_{e} \frac{\kappa_{w}Q^{2}}{Q^{2} + M_{z}^{2}} F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2}) \left[\frac{\kappa_{w}Q^{2}}{Q^{2} + M_{z}^{2}} \right]^{2} F_{2}^{Z}$$

$$x \tilde{F}_{3} \equiv -a_{e} \frac{\kappa_{w}Q^{2}}{Q^{2} + M_{z}^{2}} x F_{3}^{\gamma Z} + (2v_{e}a_{e}) \left[\frac{\kappa_{w}Q^{2}}{Q^{2} + M_{z}^{2}} \right]^{2} x F_{3}^{Z}$$

$$rder:$$

$$r + x \bar{q})$$

$$\kappa_{w} = \frac{1}{4sin^{2}(\theta_{w})\cos^{2}(\theta_{w})}$$

In Leading Order:

$$\tilde{F}_2 \propto \sum_{quarks} (xq + x \,\overline{q})$$

$$x \tilde{F}_3 \propto \sum_{quarks} (xq - x \bar{q})$$

 $\tilde{\sigma}$

Reduced cross section

$$\tilde{\sigma}_{NC}^{\pm} \equiv \tilde{F}_2 \quad when \quad F_L \equiv x\tilde{F}_3 \equiv 0$$

$$\stackrel{\pm}{}_{NC} = \frac{Q^4 x}{2 \alpha \pi^2} \frac{1}{Y_+} \frac{d^2 \sigma}{dx dQ^2} = [\tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} F_L]$$

The Structure Function F₂

15

$\mathbf{F_2}$

 5^{th}

 $\tilde{F}_{2} \propto \sum_{quarks} e_{q,i}^{2} (xq_{i} + x\bar{q}_{i})$

F₂ dominates cross-section

Measured with $\sim 2-3\%$ precision

Directly sensitive to sum of all quarks and anti-quarks

Indirectly sensitive to gluons via QCD radiation – scaling violations

Scaling Violations of F₂

5th –9th August 2002

17

The Rise of F₂ at Low x

- Very rapid increase in F₂ at low x
- Is this tamed?
- Does F₂ saturate ?
- Cross section must obey unitarity
- At some point gluon density is so large that gluon fusion must occur
- This process not part of standard DGLAP QCD \rightarrow BFKL = QCD in large gluon field

5th –9th August 2002

The Rise of F₂ at Low x

- Current F_2 precision allows study of the rise of F_2 at low x
- Use data from $Q^2 = 0.5 150$

$$\lambda = - \left[\frac{\partial \ln(F_2)}{\partial \ln(x)} \right]_{Q^2}$$

 λ constant at fixed Q^2 and x<0.01

$$F_2 \approx x^{-\lambda(Q^2)}$$

Thought to be assymptotic behaviour of F_2 at low x in BFKL

reduction of C at low $Q^2 : F_2 \to 0$ as $Q^2 \to 0$

This works phenomenologically – different behaviour at low Q^2 ?

The Longitudinal Structure Function F_L

- \bullet In leading order QCD F_L is zero
- Only appears in NLO QCD
- Directly proportional to gluon distribution
- \bullet Are the scaling violations in F_2 due to the same gluons that give rise to $F_L?$

Determination of F_L – Extrapolation Method

Determination of F_L – Derivative Method

At low Q² a QCD description of F_2 is difficult – use new method to extract F_L

5th –9th August 2002

F_L Extraction

 F_L extracted over large range in Q² from 2.2 to 700 GeV² for the first time

QCD able to describe the data – consistency check

gluons derived from F_2 **ARE** the same gluons giving rise to F_L

Need change of beam energy for measurement of ${\rm F}_{\rm L}$

Valence Quarks and xF₃

- Measurement of valence quarks at high x is important
- Current knowledge comes from fixed target data
- Problematic: data precise but subject to theoretical uncertainty
 - deuteron scattering how to treat nuclear binding effects
 - non-perturbative effects also at low Q²
 - effects of higher twist at low Q²
- HERA data are free of these uncertainties
- $\hfill \ensuremath{\bullet}$ Data at high Q2 / large x constrain the valence quarks
- Problem is statistics (low cross section...)
- Also sensitive to EW effects $-xF_3$ only arises from Z exchange

First Measurment of xF₃ at HERA

First Measurement of xF₃ at HERA

- HERA confirm valence quark structure
- Errors dominated by stat. error of e- sample

Clear need for high luminosity

Charged Current Cross Sections

• $e^+p \rightarrow v$

Probe d valence

• $e^-p \rightarrow$

L.O. CROSS SECTIONS

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left[\frac{M_{W}^{2}}{Q^{2} + M_{W}^{2}} \right]^{2} \left[\overline{u} + \overline{c} + (1 - y^{2})(d + s) \right]$$

•
$$e^- p \rightarrow \nabla X$$

Probe u valence
$$\frac{d^2 \sigma}{dx dQ^2} = \frac{G_F^2}{2\pi} \left[\frac{M_W^2}{Q^2 + M_W^2} \right]^2 \left[u + c + (1 - y^2)(\overline{d} + \overline{s}) \right]$$

- Sensitivity to separate parton densities
- Effect of W mass from propagator

Reduced Cross Section

$$\widetilde{\sigma}_{CC} = \frac{2\pi x}{G_F^2} \left[\frac{Q^2 + M_W^2}{M_W^2} \right] \frac{d^2 \sigma}{dx dQ^2}$$

Charged Current Cross Sections

Current measurements limited by statistics

In agreement with global PDFs

At high x direct sensitivity to xd_v

5th –9th August 2002

29

HERA Charged Current

At high x direct sensitivity to xu_v

5th –9th August 2002

- Use the Q² dependence to determine Mw in space–like region
- Independent check of SM consistency
- Fit the mass entering the CC propagator

Measure total CC cross section:

 $Q^2 > 1000 \ GeV^2 \ y < 0.9$ **H1:** $\sigma_{CC}^{tot}(e^-) = 43.08 \pm 1.84(stat.) \pm 1.74(syst.) \ pb$ Standard Model: $\sigma_{CC}^{tot}(e^-) = 42.70 \pm 1.65 \ pb$

 $Q^{2} > 200 \ GeV^{2}$ **ZEUS:** $\sigma_{CC}^{tot}(e^{+}) = 32.10 \pm 1.97(stat.) {}^{+0.78}_{-0.79}(syst.) \ pb$ Standard Model: $\sigma_{CC}^{tot}(e^{+}) = 32.50$ 32

5th –9th August 2002

Measurement of Q² dependence of NC and CC cross-sections for e⁺ and e⁻ scattering

Described by Standard Model over large Q² range

At Electroweak Unification is observed at $Q^2 \sim M_z^2 \sim M_w^2$

5th –9th August 2002

Parton Distribution Functions and α_s

 QCD does not predict x dependence of PDFs

- Must be extracted from data
- Accurate determinations of PDFs allow accurate SM predictions (for LHC etc)

parameters A,b,c,d,e,f optimised in fit for each PDF

some are constrained by sum rules
(e.g. momentum sum=1)

Parton Distribution Functions and α_s

QCD analyses require many choices to be made Should be reflected in PDF uncertainty:

- Q₀² starting scale
- Q^2_{min} of data included in fit
- Choice of data sets used
- Cuts to limit analysis to perturbative phase space
- Choice of densities to parameterise
- Treatment of heavy quarks
- Allowed functional form of PDF parameterisation
- Treatment of experimental systematic uncertainties
- Renormalisation / factorisation scales
- etc...

ZEUS QCD Analysis

- ZEUS perform a new global analysis use world structure function data
 - ZEUS 96/97 NC e⁺ reduced cross sections \rightarrow gluon / quarks at low x / Q²
 - F₂ NMC p &D and ratio F₂ D/p
 - F₂ E665 p & D
 - F₂ BCDMS p only
 - $xF_3 CCFR (0.1 < x < 0.65)$

- \rightarrow quarks at medium x
- \rightarrow quarks at medium x
- \rightarrow u quarks at high x / low Q²
- \rightarrow valence quarks at high x / low Q²
- Standard xg, xu_v , xd_v , Sea, x(db-ub) decomposition of p⁺
- $Q_0^2 = 7 \text{ GeV}^2 / Q_{\min}^2 = 2.5 \text{ GeV}^2$
- Impose conventional sum-rules (momentum & quark counting)
- Additional constraints on valence quark parameters ($b_{uv}=b_{dv}=0.5$)
- Use functional form = A . $x^{\mathbf{b}} \cdot (1-x)^{\mathbf{c}} \cdot (1 + dx + e\sqrt{x})$
- Experimental systematic uncertainties are propagated onto final PDF uncertainty
- Use Thorne/Roberts variable flavour number scheme.
- x(db-ub) params taken from MRST only normalisation free in fit. ^{5th} –9th August 2002

ZEUS PDFs

ZEUS global analysis in agreement with CTEQ/MRST

 $\Delta xg \sim 10\%$ for Q² > 20 GeV²

xg/F_L negative for $Q^2 \sim 1 \text{ GeV}^2$

Can set α_s free in fit:

 $\begin{array}{ccc} stat & sys & model \\ \alpha_{s}(M_{z}) = 0.1166 \pm 0.0008 \pm 0.0048 \pm 0.0018 \end{array}$

scale uncertainty +/- 0.004

H1 QCD Analysis

Different approach: Minimise theory uncertainty – minimise data sets

- Perform dedicated QCD analysis for simultaneous α_s and xg fit at low x / Q².
- Use precise H1 and BCDMS-p F₂ data to constrain valence region.
- Check consistency of data sets.
- Tune fitted PDFs to measured cross sections.

no nuclear corrction required

- $\bullet xg$
- $xV = \frac{9}{4}u_v + \frac{3}{2}d_v$ $xA = \overline{u} + \frac{1}{4}(u_v 2d_v)$ $F_2 = \frac{1}{3}xV + \frac{11}{9}xA$ used for systematic checks
- Use parametric form of: $A.x^{b} \cdot (1-x)^{c} \cdot (1 + dx + e\sqrt{x + fx^{2}})$
- Use 3–flavour number scheme optimal choice in region of precision H1 data
- Experimental systematics are fitted \rightarrow PDF error bands
- Apply sum / counting rules

H1 Gluon and $\alpha_s(M_Z)$

 α_{s} fixed get $\Delta xg \sim 3\% \ Q^{2} \sim 20 \ GeV^{2}$ exp. model $\alpha_{s}(M_{z}) = 0.1150 \pm 0.0017^{+0.0009}_{-0.0005}$

large additional model unc. due to change in $\mu_{\mathbf{f}} \Rightarrow$ N–NLO theory required!

H1 and ZEUS have analysed complete HERA data set:

NC & CC e+ data $\sqrt{s}=300$ (94–97) 35 pb⁻¹ NC & CC e- data $\sqrt{s}=320$ (94–97) 16 pb⁻¹ NC & CC e+ data $\sqrt{s}=320$ (94–97) 65 pb⁻¹ NC data at low Q² < 100 (96–97)

NC & CC data with different lepton charges provides quark flavour sensitivity xg and Sea distributions determined by low x / Q² HERA F₂ data xu_v determined from high x NC data xd_v determined from high x CC e+ data

Fit to ZEUS data only: HERA data provide valence constraint

 xd_v found to be larger but in agreement

low x parameters fixed in PDF fit

Fit to ZEUS data + global DIS data smaller uncertainty ~ factor 2

5th –9th August 2002

H1 perform a dedicated fit: tune fitted PDFs to NC/CC cross section sensitivity:

x U = xu + xc	$u_v = U - U$	
xD = xd + xs	$d_v = D - \overline{D}$	
$x\overline{U} = x\overline{u} + x\overline{c}$	$F_{2} = \frac{4}{2}(xU + x\bar{U}) + \frac{1}{2}(xD + x\bar{D})$	
$x\bar{D} = x\bar{d} + x\bar{s}$	² 9 9 9 9	
xg	$\tilde{\sigma}_{CC}^{+} = x U + (1-y)^2 x D$	
	$\tilde{\sigma}_{CC}^{-} = xU + (1-y)^2 x \bar{D}$	

 F_2^N requires additional small assumption on fraction of charm and strange

Perform fit in massless scheme – appropriate for high Q² Careful choice of parameterisations $(1 + Ex + D\sqrt{x} + Fx^2)$ Include BCDMS p and D data

Fit provides tight constraint on xu and xd at high x

xd ~ 9%

xu ~ 1% at x=0.4

Can compare fit result with local extraction method:

Use cross section measurements at high x dominated (>70%) by xu or xd

Insensitive to QCD evolution effects

Complementary to QCD fit

Summary

- First phase of HERA has yielded mass of interesting results
- Analysis of all structure function data is (almost) complete
- Precision of ~2–3 % achieved for F_2
- HERA data provide consistent picture of the proton from NC / CC/ xF_3 / F_L / F_2
- α_s extracted from DIS data competetive with world average
- Measurements cover 5 orders of magnitude in Q^2 and x probe structre of matter at scale of 10^{-18} m
- QCD abe to describe data
- Fits allow HERA data to constrain PDFs require more data
- HERA upgrade now in full swing awaiting 1 fb⁻¹