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Overview

o Definitions and Descriptions

— DIS and diffraction
— The Breit Frame
— Models of diffraction

e Rapidity
e Fragmentation Function

— Peak and widths

— Average Charged Multiplicity
e Conclusions

Motivation

e Compare the charged track longitudinal
momentum spectra of DIS with diffraction.

o Test quark fragmentation Universality (quark
from ete™ — qg = struck quark from
ep = struck quark from elP).

o [est various models of diffraction




Useful Definitions

QPM Picture of DIS:
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Event Selection

e¢Hly Run 64901 Event 33275 Class: 10 11 18 23 Date 22/02/1994

12<Q <100 GeV 0.055<y<0.6 SEE =14 GeV
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Event Selection

' Run 84629 Event 76749 Class: 3 10 11 15 20 25 26 28

Run date 16/08/94 |
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Breit Frame

Current Torget
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Resolved Pomeron Model
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Ingelman and Schlein®
Treat pomeron as hadron within the proton.
Similar to proton and photon structure functions

H1 fits; quark dominated fit 1, flat gluon fit 2, peaked
gluon fit 3

Monte-Carlo: RAPGAP

Iphys. Lett. B152 (1985) 256




Soft Colour Interactions
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e Ingelman, Edin, Rathsman?

o Normal ep scattering + colour neutralisation through
soft gluon

e Original model,  universal

colour  rearrangement
probability

e New model, generalised area law

e Monte-Carlo: LEPTO

%Phys. Lett. B 366 (1996) 371




Colour Dipole and 2-Gluon Models
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Scattering of ¢g and ¢gg colour dipoles off the proton via 2
gluon exchange.

qq production at medium and high 8 (small M)
qqg production at Low [ (large M)

Saturation model

e Golec-Biernat & Wusthoff
e Monte-Carlo: RAPGAP

Other Models

e Bartels, Jung, Lotter, Wusthoff

3Phys. Rev D 59 (1999) 014017




Rapidity Spectra (1)

1. (E+P,
Y =5 (g5
E - P,

E = energy of particle (assuming pion mass - corrections
made using Monte-Carlo)

P, = Longitudinal Momentum

2In(W/m)

In(Q/m) l=—|

-

Breit Frame Origin
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Rapidity Spectra (2)
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e Best Models
e Difference between DIS and DIFF.
e Difference between high and low 3 DIFF.
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Rapidity: Model Comparison (1)

LR
| o DIFF (@) ]
H1 PRELIMINARY

-+ RES. IP (HI fitl)
--- RES. IP (H1 fit2)
------ RES. IP (HI fit3)
— Saturation model

1/N dn/dY

§3-5 [T T 7 T * ' "1 '(b>' %3-5 T T T Tl '<)'
2 3 | DIFF [3<0.2 __% 3 __A DIFF 3>0.2 € _
<25 1525 | .
: 1
J 13 - e 5 '_ =
] —_ ! N\ —
05 [/ e -

0 (T B A

-2 0 2

e Fit 2 and 3 indistinguishable.
e Fit 1 fails (already known), sensitivity to different models.
e Saturation Model, low central multiplicity

e Sensitivity at low 3.
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Rapidity: Model comparison (2)
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® Best description of DIS given by LEPTO with no SCI.

e Large difference between NEW and OLD SCI versions for DIS
e Little difference between versions for DIFF.

e Multiplicity too low in target region at low 3.
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Fragmentation Function (1)

Inclusive Scaled Momentum distribution.

Event Normalised Charged track density

D(ey) = o ()

Nevents dxp
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Fragmentation Function (2)

To examine turnover region recast in terms of £
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Is approximately Gaussian. Predicts evolution with ().

region of the peak the shape
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Fragmentation Function (3)

H1 PRELIMINARY
A « DIS ()]
22 | o DIFF
L —MLILA (DIS)
2 ....MLLA (DIFF)

e Very Good agreement between DIS and DIFF.
e Very similar MLLA fits.

e Results lend further support for concept of quark fragmentation
universality. (eTe™ — qq, ep — €'X, ep = €' XY)
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Average Charged Multiplicity (1)
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e Difference between ee™ — ¢g and DIS due to LO QCD effects.

e High B DIFF similar to ete™ — q7.
e Low 3 DIFF similar to DIS.
e Models describe data.
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QCD LO Processes

current target  current ftarget  current target

(a) (b) (c)

e Lower Multiplicity in current region due to LO QCD.
e Similar effect seen in Diffraction?

e Difference also seen in most Diffractive models.
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Average Charged Multiplicity (2)
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e Saturation overestimates multiplicity in current region at low 3.

e Otherwise description of data reasonable.




Conclusions

Best description of data obtained from Resolved pomeron
model (H1 fit 2 or 3) for diffraction and MEAR for DIS.

Other models able to at least qualitatively describe the
various distributions.

Differences between high and low 8 can be interpreted
the as result of gluon emission at low 3 (large M,)
leading to a depleted or empty current region and hence
multiplicity is similar to DIS.

At high 8 (small M) the limited phase space restricts
gluon emission and hence multiplicity is similar to
ete™ = qq.

Phase space effect, not restricted to any one particular
model.

Further support for concept of quark fragmentation
universality
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