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Deep Inelastic Scattering (DIS)
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The Kinematic Reach of HERA
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Cross Section and Structure Functions
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Structure Functions within the Quark-Parton-Model


DIS = 
electron scatters off a charged 
constituent (parton) of the proton 
(= elastic scattering)
identify the charged partons with 
QUARKS (= spin 1/2 fermions) 


Quark-Parton-Model (QPM)
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Quantum Chromodynamics (QCD)
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Parton densities become functions
of 2Q
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Quantum Chromodynamics (cont.)


Parton evolution according to Altarelli-Parisi (DGLAP) integro-differential equations:
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Quantitative Picture of the DGLAP Evolution
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Wirklichkeit Modell, Theorie


Electron Proton Scattering in Real Detectors ....


Netral current events in 


H1 (medium Q2)


ZEUS (large Q2)
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Precision Measurements of  
2F
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Big surprise in the early HERA running:
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Precision Measurements of  
2F
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of    and x 2Q


to measure      need to get rid of        ! 2F LF


cut: use only events with
(typically                 ) 


cuty y<
cut 0.6y =


Correct for remaining contribution
using QCD 


2F xrising much faster with falling
than expected in Regge picture


Data well described by QCD evolution


Big surprise in the early HERA running:


HERA data overlap and agree with 
fixed target data, similar in precision
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Strong Rise of     Towards low 
2F x


Parameterize low     part of  x
2F x λ−∼


QCD fits: rise is driven by the gluons


At low        the slope      is approaching 
the „soft“ Regge limit  


2Q λ


0.08λ =
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Transition to the Photoproduction Limit
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The Longitudinal Structure Function LF


LO QCD :
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Longitudinal Structure Function (cont.)


consistent with QCD


extension of      to much lower LF x


„subtraction method“


„derivative method“ 
2ln Qy
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QCD Analyses


Very precise measurements of
provided by ZEUS and H1 


2F


Parameterize parton densities 
[ ]0( , ) (1 ) 1B Cxq x Q Ax x D x Ex= − + +


Fit data to obtain the various parameters
(e.g. H1 uses 16 including     ) Sα


Data are very well described by QCD


Clear scaling violation observed,
violation is driven by gluon emission


Describing this data in a QCD fit will
give access to the gluon density within 
the proton
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Gluon density and the strong coupling constant


Example: NLO QCD fit by H1


Gluon density is rising at low x


Resulting value for Sα


S


exp) "model")0.0009
0.0005


( ) 0.1150


0.0017( (
ZMα =


± ±


Theoretical uncertainties 
(renormalization and factorization
scales) are rather large: 


0.005


Need NNLO !
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Strong Coupling Constant from Jets


From
jet cross
sections


From jet rates


In QCD, the strong coupling constant is „running“


unique possibility to test this feature in a single
experiment (large       range)2Q


H1:


ZEUS:


S exp)( ) 0.1186 0.0030(ZMα = ±


0.0024
S 0.0033stat) .)( ) 0.1166 0.0019( (expZMα = ± ±


Theoretical errors
similar to exp.
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What makes the Proton spin ?


the players: 
spin 1/2 quarks and antiquarks
spin 1 gluons


polarized nucleon
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DIS as a Probe of the Nucleon Spin Structure


In analogy to the structure function
define 
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Individual Quark Flavors: Semi-Inclusive DIS
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Semi-Inclusive DIS (cont.)


Results on valence quarks and sea
(using p, He, D) 


Resulting flavor decomposition
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What about the Gluon ?


Direct way to measure the gluon contribution:
Photon-gluon fusion
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Transversity
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accessible via spin dependence of the 
azimuthal distribution of the leading pion
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Last not Least: Orbital Angular Momentum


Recent theoretical development: 


Skewed Parton Distributions offer 
unique way to access orbital momentum
of the quarks


γep epγ→


p


DVCS:
asymmertry
predicted


Cleanest reaction to test: 
Deeply virtual Compton scattering (DVCS)


p p
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Electroweak Sector: Scattering at high     2Q
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NC Cross Section at high      and2Q 3xF
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Extraction of 3xF


First measurements of
on protons


3xF


Agrees with PDF‘s evolved
from lower 2Q


Still statistics limited


HERA II







C. Kiesling, 52. EWR, DESY, June 1, 2001  
30


CC Cross Section at high      and the valence quarks 2Q
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Valence Quark Densities from HERA


At low     the sea is dominatingx


( ) ( )CC CCe p e pσ σ+ −≈


At high     mostly     in x d ( )CC e pσ +


mostly     in u ( )CC e pσ −


Valence quark distributions
can be extracted with minimal
corrections from QCD fits


Measurements agree well with
PDF‘s evolved from lower 2Q
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Beyond the Standard Model


New data do not confirm the effectHigh mass excess in the old H1 data 
(invariant mass of electron-quark system)
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Searches for New Physics


General strategy: Direct searches


,LQ R


M s≤


Look for „bumps“ 
in mass spectra


Indirect searches
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η
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differential cross sections
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No signal found , yet
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Future Physics at HERA II


The Standard Model (electroweak, QCD) seems firmly established and supported by 
the data, why do we want to continue?


The Standard Model is certainly incomplete:


too many free parameters (e.g. particle masses)


no clue how to solve the non-perturbative sector


and many other reasons .....


HERA is the world‘s leading QCD machine and will strongly improve:


Instantaneous luminosity will increase by a factor of 5 


Expect 1000 pb-1 until 2005


Polarization of the electron/positron beams (> 50 % after 1 hour)


Precision measurements of the polarization (bunch per bunch)
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Future Physics at HERA II (cont.)


Some physics topics (and experimental implications) to address:


Gluon density: 


Very little information from direct determinations, such as 
boson-gluon fusion (heavy quarks), exclusive final states ( / , )J ψ ϒ


QCD evolution:


Forward jets, DGLAP vs BFKL


Diffraction:


Separation of diffractive systems from intact proton


High 


Particles will populate the forward region of detectors


2Q


Adequate Upgrade of the detectors needed Bending magnets close
to IR !







C. Kiesling, 52. EWR, DESY, June 1, 2001  
36


Detector Upgrades for HERA II
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Detector Upgrades for HERA II
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Polarization at HERA II


Accurate measurement of polarization,
shared by the two collider experiments:


TPOL by ZEUS, LPOL by H1


Exciting prospect of a vanishing 
CC Cross Section


If New Physics is found, polarisation strongly
helps to disentangle and discriminate the
source   


Typical limits > 400 GeV (right-handed currents) 







C. Kiesling, 52. EWR, DESY, June 1, 2001  
39


Watch out for the Unexpected ...
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Conclusions


HERA I has produced a wealth of exciting physics, e.g.


Proton Structure: Strong rise of     ,  central role of the gluon2F


Partonic content of the (virtual) photon


Deepened insight into diffractive processes (colorless exchange)


Manifest Electroweak Unification


HERA II offers exciting prospects 


1000 pb-1 (instantaneous luminosity increase by factor 5) 


Polarized electrons and positrons


Experiments are completing major upgrades of their detectors


Improved hadronic final state detection (heavy quarks, forward jets etc.) 


Improved triggers for better selectivity (rare / exclusive reactions)


are looking forward ...






